|
import os |
|
import sys |
|
|
|
sys.path.append(os.getcwd()) |
|
|
|
import argparse |
|
import csv |
|
import json |
|
import shutil |
|
from importlib.resources import files |
|
from pathlib import Path |
|
|
|
import torchaudio |
|
from tqdm import tqdm |
|
from datasets.arrow_writer import ArrowWriter |
|
|
|
from f5_tts.model.utils import ( |
|
convert_char_to_pinyin, |
|
) |
|
|
|
|
|
PRETRAINED_VOCAB_PATH = files("f5_tts").joinpath("../../data/Emilia_ZH_EN_pinyin/vocab.txt") |
|
|
|
|
|
def is_csv_wavs_format(input_dataset_dir): |
|
fpath = Path(input_dataset_dir) |
|
metadata = fpath / "metadata.csv" |
|
wavs = fpath / "wavs" |
|
return metadata.exists() and metadata.is_file() and wavs.exists() and wavs.is_dir() |
|
|
|
|
|
def prepare_csv_wavs_dir(input_dir): |
|
assert is_csv_wavs_format(input_dir), f"not csv_wavs format: {input_dir}" |
|
input_dir = Path(input_dir) |
|
metadata_path = input_dir / "metadata.csv" |
|
audio_path_text_pairs = read_audio_text_pairs(metadata_path.as_posix()) |
|
|
|
sub_result, durations = [], [] |
|
vocab_set = set() |
|
polyphone = True |
|
for audio_path, text in audio_path_text_pairs: |
|
if not Path(audio_path).exists(): |
|
print(f"audio {audio_path} not found, skipping") |
|
continue |
|
audio_duration = get_audio_duration(audio_path) |
|
|
|
text = convert_char_to_pinyin([text], polyphone=polyphone)[0] |
|
sub_result.append({"audio_path": audio_path, "text": text, "duration": audio_duration}) |
|
durations.append(audio_duration) |
|
vocab_set.update(list(text)) |
|
|
|
return sub_result, durations, vocab_set |
|
|
|
|
|
def get_audio_duration(audio_path): |
|
audio, sample_rate = torchaudio.load(audio_path) |
|
num_channels = audio.shape[0] |
|
return audio.shape[1] / (sample_rate * num_channels) |
|
|
|
|
|
def read_audio_text_pairs(csv_file_path): |
|
audio_text_pairs = [] |
|
|
|
parent = Path(csv_file_path).parent |
|
with open(csv_file_path, mode="r", newline="", encoding="utf-8-sig") as csvfile: |
|
reader = csv.reader(csvfile, delimiter="|") |
|
next(reader) |
|
for row in reader: |
|
if len(row) >= 2: |
|
audio_file = row[0].strip() |
|
text = row[1].strip() |
|
audio_file_path = parent / audio_file |
|
audio_text_pairs.append((audio_file_path.as_posix(), text)) |
|
|
|
return audio_text_pairs |
|
|
|
|
|
def save_prepped_dataset(out_dir, result, duration_list, text_vocab_set, is_finetune): |
|
out_dir = Path(out_dir) |
|
|
|
out_dir.mkdir(exist_ok=True, parents=True) |
|
print(f"\nSaving to {out_dir} ...") |
|
|
|
|
|
|
|
raw_arrow_path = out_dir / "raw.arrow" |
|
with ArrowWriter(path=raw_arrow_path.as_posix(), writer_batch_size=1) as writer: |
|
for line in tqdm(result, desc="Writing to raw.arrow ..."): |
|
writer.write(line) |
|
|
|
|
|
dur_json_path = out_dir / "duration.json" |
|
with open(dur_json_path.as_posix(), "w", encoding="utf-8") as f: |
|
json.dump({"duration": duration_list}, f, ensure_ascii=False) |
|
|
|
|
|
|
|
|
|
|
|
voca_out_path = out_dir / "vocab.txt" |
|
with open(voca_out_path.as_posix(), "w") as f: |
|
for vocab in sorted(text_vocab_set): |
|
f.write(vocab + "\n") |
|
|
|
if is_finetune: |
|
file_vocab_finetune = PRETRAINED_VOCAB_PATH.as_posix() |
|
shutil.copy2(file_vocab_finetune, voca_out_path) |
|
else: |
|
with open(voca_out_path, "w") as f: |
|
for vocab in sorted(text_vocab_set): |
|
f.write(vocab + "\n") |
|
|
|
dataset_name = out_dir.stem |
|
print(f"\nFor {dataset_name}, sample count: {len(result)}") |
|
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}") |
|
print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours") |
|
|
|
|
|
def prepare_and_save_set(inp_dir, out_dir, is_finetune: bool = True): |
|
if is_finetune: |
|
assert PRETRAINED_VOCAB_PATH.exists(), f"pretrained vocab.txt not found: {PRETRAINED_VOCAB_PATH}" |
|
sub_result, durations, vocab_set = prepare_csv_wavs_dir(inp_dir) |
|
save_prepped_dataset(out_dir, sub_result, durations, vocab_set, is_finetune) |
|
|
|
|
|
def cli(): |
|
|
|
|
|
parser = argparse.ArgumentParser(description="Prepare and save dataset.") |
|
parser.add_argument("inp_dir", type=str, help="Input directory containing the data.") |
|
parser.add_argument("out_dir", type=str, help="Output directory to save the prepared data.") |
|
parser.add_argument("--pretrain", action="store_true", help="Enable for new pretrain, otherwise is a fine-tune") |
|
|
|
args = parser.parse_args() |
|
|
|
prepare_and_save_set(args.inp_dir, args.out_dir, is_finetune=not args.pretrain) |
|
|
|
|
|
if __name__ == "__main__": |
|
cli() |
|
|