Security_Tools / pages /malicious_url.py
YashMK89's picture
Update pages/malicious_url.py
82f26bf verified
import streamlit as st
import re
import math
import time
import os
import joblib
import numpy as np
import pandas as pd
import torch
import tensorflow as tf
from collections import Counter
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.sequence import pad_sequences
import tldextract
from rapidfuzz import fuzz, process
# Set page config
st.set_page_config(
page_title="URL Threat Detector",
page_icon="🛡️",
layout="wide",
initial_sidebar_state="expanded"
)
# Disable GPU usage for TensorFlow and PyTorch
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
tf.config.set_visible_devices([], 'GPU')
# Global configuration
MAX_LEN = 200
FIXED_FEATURE_COLS = [
'url_length', 'domain_length', 'subdomain_count', 'path_depth',
'param_count', 'has_ip', 'has_executable', 'has_double_extension',
'hex_encoded', 'digit_ratio', 'special_char_ratio', 'entropy',
'is_safe_domain', 'is_uncommon_tld'
]
# Enhanced domain and TLD lists
SAFE_DOMAINS = {
'google.com', 'google.co.in', 'google.co.uk', 'google.fr', 'google.de',
'amazon.com', 'amazon.in', 'amazon.co.uk', 'amazon.de', 'amazon.fr',
'wikipedia.org', 'github.com', 'python.org', 'irs.gov', 'adobe.com',
'steampowered.com', 'imdb.com', 'weather.com', 'archive.org', 'cdc.gov',
'microsoft.com', 'apple.com', 'youtube.com', 'facebook.com', 'twitter.com',
'linkedin.com', 'instagram.com', 'netflix.com', 'reddit.com', 'stackoverflow.com',
'google.com', 'amazon.in', 'linkedin.com'
}
COMMON_TLDS = {
'com', 'org', 'net', 'gov', 'edu', 'mil', 'co', 'io', 'ai', 'in',
'uk', 'us', 'ca', 'au', 'de', 'fr', 'es', 'it', 'nl', 'jp', 'cn',
'br', 'mx', 'ru', 'ch', 'se', 'no', 'dk', 'fi', 'be', 'at', 'nz'
}
# Initialize tldextract
tld_extractor = tldextract.TLDExtract()
@st.cache_resource
def load_char_mapping():
char_to_idx_path = 'char_to_idx.pkl'
if not os.path.exists(char_to_idx_path):
st.error(f"Character mapping file not found: {char_to_idx_path}")
return None
return joblib.load(char_to_idx_path)
@st.cache_resource
def load_all_models():
"""Load models with CPU optimization"""
models = {}
model_dir = "models"
if not os.path.exists(model_dir):
os.makedirs(model_dir)
st.warning(f"Created model directory: {model_dir}")
# Hybrid models
hybrid_models = {
'hybrid': 'hybrid_model.h5',
'hybrid_fold1': 'best_hybrid_fold1.h5',
'hybrid_fold2': 'best_hybrid_fold2.h5'
}
for name, file in hybrid_models.items():
path = os.path.join(model_dir, file)
if os.path.exists(path):
try:
models[name] = load_model(path)
st.success(f"Loaded {name}")
except Exception as e:
st.error(f"Error loading {name}: {str(e)}")
else:
st.warning(f"Model file not found: {path}")
# Traditional models
traditional_models = {
'random_forest': 'random_forest_model.pkl',
'xgboost': 'xgboost_model.pkl',
}
for name, file in traditional_models.items():
path = os.path.join(model_dir, file)
if os.path.exists(path):
try:
models[name] = joblib.load(path)
st.success(f"Loaded {name}")
except Exception as e:
st.error(f"Error loading {name}: {str(e)}")
else:
st.warning(f"Model file not found: {path}")
return models
def normalize_url(url):
"""Normalize URL with proper indentation and parenthesis"""
try:
is_https = url.lower().startswith('https://')
url = url.lower()
prefixes = ['http://', 'ftp://', 'www.', 'ww2.', 'web.']
for prefix in prefixes:
if url.startswith(prefix):
url = url[len(prefix):]
if is_https:
url = "https://" + url
url = url.split('#')[0]
if '?' in url:
base, query = url.split('?', 1)
if not any(sd in base for sd in SAFE_DOMAINS):
params = [p for p in query.split('&') if '=' in p]
essential_params = [p for p in params if any(
kw in p for kw in ['id=', 'ref=', 'token='])]
url = base + ('?' + '&'.join(essential_params) if essential_params else ''
return re.sub(r'/{2,}', '/', url)
except Exception:
return url
def extract_url_components(url):
"""Robust URL parsing"""
try:
extracted = tld_extractor(url)
subdomain = extracted.subdomain
domain = extracted.domain
suffix = extracted.suffix
path = ""
query = ""
if "/" in url:
path_start = url.find("/", url.find("//") + 2) if "//" in url else url.find("/")
if path_start != -1:
path_query = url[path_start:]
if "?" in path_query:
path, query = path_query.split("?", 1)
else:
path = path_query
if not domain and subdomain:
domain_parts = subdomain.split('.')
if len(domain_parts) > 1:
domain = domain_parts[-1]
subdomain = '.'.join(domain_parts[:-1])
return {
'subdomain': subdomain,
'domain': domain,
'suffix': suffix,
'path': path,
'query': query
}
except:
return {
'subdomain': '',
'domain': '',
'suffix': '',
'path': '',
'query': ''
}
def calculate_entropy(s):
"""Compute Shannon entropy"""
if not s:
return 0
try:
p, lns = Counter(s), float(len(s))
return -sum(count/lns * math.log(count/lns, 2) for count in p.values())
except:
return 0
def fuzzy_domain_match(domain):
"""Safe domain matching"""
if domain in SAFE_DOMAINS:
return True
domain_parts = domain.split('.')
if len(domain_parts) > 2:
base_domain = '.'.join(domain_parts[-2:])
if base_domain in SAFE_DOMAINS:
return True
best_match, score, _ = process.extractOne(domain, SAFE_DOMAINS, scorer=fuzz.WRatio)
return score > 85
def extract_robust_features(url):
"""Feature extraction optimized for CPU"""
try:
clean_url = re.sub(r'[^\x00-\x7F]+', '', str(url))
normalized = normalize_url(clean_url)
components = extract_url_components(clean_url)
full_domain = f"{components['domain']}.{components['suffix']}" if components['suffix'] else components['domain']
# Structural features
url_length = len(clean_url)
domain_length = len(components['domain'])
subdomain_count = len(components['subdomain'].split('.')) if components['subdomain'] else 0
path_depth = components['path'].count('/') if components['path'] else 0
param_count = len(components['query'].split('&')) if components['query'] else 0
# Security features
has_ip = 1 if re.match(r'^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$', components['domain']) else 0
has_executable = 1 if re.search(r'\.(exe|js|jar|bat|sh|py|dll)$', components['path'], re.I) else 0
has_double_extension = 1 if re.search(r'\.\w+\.\w+$', components['path'], re.I) else 0
hex_encoded = 1 if re.search(r'%[0-9a-f]{2}', normalized, re.I) else 0
# Lexical features
digit_count = sum(c.isdigit() for c in normalized)
special_chars = sum(not (c.isalnum() or c in ' ./-') for c in normalized)
digit_ratio = digit_count / url_length if url_length > 0 else 0
special_char_ratio = special_chars / url_length if url_length > 0 else 0
entropy = calculate_entropy(normalized)
# Domain reputation
is_safe_domain = 1 if fuzzy_domain_match(full_domain) else 0
is_uncommon_tld = 1 if components['suffix'] and components['suffix'] not in COMMON_TLDS else 0
if url.startswith('https://') and full_domain in SAFE_DOMAINS:
is_safe_domain = 1
return {
'url_length': url_length,
'domain_length': domain_length,
'subdomain_count': subdomain_count,
'path_depth': path_depth,
'param_count': param_count,
'has_ip': has_ip,
'has_executable': has_executable,
'has_double_extension': has_double_extension,
'hex_encoded': hex_encoded,
'digit_ratio': digit_ratio,
'special_char_ratio': special_char_ratio,
'entropy': entropy,
'is_safe_domain': is_safe_domain,
'is_uncommon_tld': is_uncommon_tld
}
except Exception as e:
st.error(f"Feature extraction error: {str(e)}")
return {col: 0 for col in FIXED_FEATURE_COLS}
def preprocess_url(url, char_to_idx):
"""URL preprocessing for CPU"""
try:
clean_url = re.sub(r'[^\x00-\x7F]+', '', str(url))
normalized = normalize_url(clean_url)
features = extract_robust_features(clean_url)
feature_vector = np.array([features.get(col, 0) for col in FIXED_FEATURE_COLS]).reshape(1, -1)
char_seq = [char_to_idx.get(c, 0) for c in normalized]
char_seq = pad_sequences([char_seq], maxlen=MAX_LEN, padding='post', truncating='post')
return char_seq, feature_vector, features
except Exception as e:
st.error(f"Preprocessing error: {str(e)}")
return np.zeros((1, MAX_LEN)), np.zeros((1, len(FIXED_FEATURE_COLS))), {}
def weighted_ensemble_predict(models, char_seq, feature_vector, features):
"""Ensemble prediction for CPU"""
predictions = []
weights = {
'hybrid': 0.25,
'hybrid_fold1': 0.20,
'hybrid_fold2': 0.20,
'xgboost': 0.35
}
if features.get('is_safe_domain', 0) == 1:
return 0.01, [('safe_domain_override', 0.01)]
for model_name, model in models.items():
if model_name in weights:
try:
if 'hybrid' in model_name:
proba = model.predict([char_seq, feature_vector], verbose=0)[0][0]
else:
adjusted_features = feature_vector[:, :14] if feature_vector.shape[1] > 14 else feature_vector
proba = model.predict_proba(adjusted_features)[0][1]
predictions.append((model_name, proba))
except Exception as e:
st.error(f"Prediction error in {model_name}: {str(e)}")
if predictions:
weighted_sum = sum(p * weights.get(name, 0) for name, p in predictions)
total_weight = sum(weights.get(name, 0) for name, _ in predictions)
avg_proba = weighted_sum / total_weight if total_weight > 0 else sum(p for _, p in predictions) / len(predictions)
else:
avg_proba = 0.5
return avg_proba, predictions
def analyze_single_url(url, char_to_idx, models):
"""Analyze a single URL"""
with st.spinner(f"Analyzing URL: {url[:50]}..."):
start_time = time.time()
char_seq, feature_vector, features = preprocess_url(url, char_to_idx)
ensemble_proba, model_predictions = weighted_ensemble_predict(
models, char_seq, feature_vector, features)
processing_time = time.time() - start_time
st.subheader("Analysis Results")
col1, col2 = st.columns([1, 2])
with col1:
if ensemble_proba >= 0.5:
st.error(f"🔴 **Threat Detected!** (Probability: {ensemble_proba:.4f})")
else:
st.success(f"🟢 **Safe URL** (Probability: {ensemble_proba:.4f})")
st.metric("Processing Time", f"{processing_time*1000:.2f} ms")
st.subheader("Key Features")
st.json({
"URL Length": features.get('url_length', 0),
"Domain Length": features.get('domain_length', 0),
"Subdomains": features.get('subdomain_count', 0),
"Path Depth": features.get('path_depth', 0),
"Parameters": features.get('param_count', 0),
"Contains IP": bool(features.get('has_ip', 0)),
"Contains Executable": bool(features.get('has_executable', 0)),
"Double Extension": bool(features.get('has_double_extension', 0)),
"Hex Encoded": bool(features.get('hex_encoded', 0)),
"Safe Domain": bool(features.get('is_safe_domain', 0)),
"Uncommon TLD": bool(features.get('is_uncommon_tld', 0)),
"Entropy": features.get('entropy', 0)
})
with col2:
st.subheader("Model Predictions")
model_df = pd.DataFrame(model_predictions, columns=['Model', 'Probability'])
model_df['Prediction'] = model_df['Probability'].apply(
lambda x: "MALICIOUS" if x >= 0.5 else "SAFE")
st.bar_chart(model_df.set_index('Model')['Probability'])
st.write("Detailed Model Results:")
for model_name, proba in model_predictions:
pred = "MALICIOUS" if proba >= 0.5 else "SAFE"
st.write(f"- **{model_name}**: {proba:.4f} ({pred})")
def analyze_batch_urls(urls, char_to_idx, models):
"""Analyze multiple URLs"""
results = []
progress_bar = st.progress(0)
status_text = st.empty()
for i, url in enumerate(urls):
status_text.text(f"Processing {i+1}/{len(urls)}: {url[:50]}...")
progress_bar.progress((i + 1) / len(urls))
try:
char_seq, feature_vector, features = preprocess_url(url, char_to_idx)
ensemble_proba, _ = weighted_ensemble_predict(models, char_seq, feature_vector, features)
results.append({
'URL': url,
'Threat Probability': ensemble_proba,
'Classification': "MALICIOUS" if ensemble_proba >= 0.5 else "SAFE"
})
except Exception as e:
st.error(f"Error processing {url}: {str(e)}")
if results:
results_df = pd.DataFrame(results)
st.dataframe(results_df)
csv = results_df.to_csv(index=False).encode('utf-8')
st.download_button(
"Download Results",
csv,
"url_analysis_results.csv",
"text/csv",
key='download-csv'
)
def main():
st.title("🛡️ URL Threat Detector (CPU Version)")
st.markdown("""
This tool analyzes URLs using machine learning models to detect potential threats.
Optimized for CPU-only environments.
""")
with st.sidebar:
st.header("About")
st.markdown("""
- **Models**: Hybrid CNN+MLP, XGBoost
- **Features**: URL structure, lexical patterns, domain reputation
- **Environment**: CPU-only
""")
st.header("Example URLs")
st.code("https://paypal-security-alert.com/login")
st.code("https://github.com/features/actions")
# Load resources
with st.spinner("Loading models..."):
char_to_idx = load_char_mapping()
models = load_all_models()
if not char_to_idx or not models:
st.error("Failed to load required resources. Please check the model files.")
return
# URL input
st.subheader("Single URL Analysis")
url_input = st.text_input("Enter URL to analyze:",
placeholder="https://example.com",
label_visibility="visible")
if st.button("Analyze URL") and url_input:
analyze_single_url(url_input, char_to_idx, models)
# Batch analysis
st.subheader("Batch Analysis")
uploaded_file = st.file_uploader("Upload a text file with URLs (one per line)",
type=['txt', 'csv'])
if uploaded_file is not None:
urls = [line.decode('utf-8').strip() for line in uploaded_file if line.strip()]
if urls and st.button("Analyze All URLs"):
analyze_batch_urls(urls, char_to_idx, models)
if __name__ == "__main__":
# Configure TensorFlow logging
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.get_logger().setLevel('ERROR')
# Run the app
main()