import streamlit as st import re import math import time import os import joblib import numpy as np import pandas as pd import torch import tensorflow as tf from collections import Counter from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.sequence import pad_sequences import tldextract from rapidfuzz import fuzz, process # Set page config st.set_page_config( page_title="URL Threat Detector", page_icon="🛡️", layout="wide", initial_sidebar_state="expanded" ) # Disable GPU usage for TensorFlow and PyTorch os.environ['CUDA_VISIBLE_DEVICES'] = '-1' tf.config.set_visible_devices([], 'GPU') # Global configuration MAX_LEN = 200 FIXED_FEATURE_COLS = [ 'url_length', 'domain_length', 'subdomain_count', 'path_depth', 'param_count', 'has_ip', 'has_executable', 'has_double_extension', 'hex_encoded', 'digit_ratio', 'special_char_ratio', 'entropy', 'is_safe_domain', 'is_uncommon_tld' ] # Enhanced domain and TLD lists SAFE_DOMAINS = { 'google.com', 'google.co.in', 'google.co.uk', 'google.fr', 'google.de', 'amazon.com', 'amazon.in', 'amazon.co.uk', 'amazon.de', 'amazon.fr', 'wikipedia.org', 'github.com', 'python.org', 'irs.gov', 'adobe.com', 'steampowered.com', 'imdb.com', 'weather.com', 'archive.org', 'cdc.gov', 'microsoft.com', 'apple.com', 'youtube.com', 'facebook.com', 'twitter.com', 'linkedin.com', 'instagram.com', 'netflix.com', 'reddit.com', 'stackoverflow.com', 'google.com', 'amazon.in', 'linkedin.com' } COMMON_TLDS = { 'com', 'org', 'net', 'gov', 'edu', 'mil', 'co', 'io', 'ai', 'in', 'uk', 'us', 'ca', 'au', 'de', 'fr', 'es', 'it', 'nl', 'jp', 'cn', 'br', 'mx', 'ru', 'ch', 'se', 'no', 'dk', 'fi', 'be', 'at', 'nz' } # Initialize tldextract tld_extractor = tldextract.TLDExtract() @st.cache_resource def load_char_mapping(): char_to_idx_path = 'char_to_idx.pkl' if not os.path.exists(char_to_idx_path): st.error(f"Character mapping file not found: {char_to_idx_path}") return None return joblib.load(char_to_idx_path) @st.cache_resource def load_all_models(): """Load models with CPU optimization""" models = {} model_dir = "models" if not os.path.exists(model_dir): os.makedirs(model_dir) st.warning(f"Created model directory: {model_dir}") # Hybrid models hybrid_models = { 'hybrid': 'hybrid_model.h5', 'hybrid_fold1': 'best_hybrid_fold1.h5', 'hybrid_fold2': 'best_hybrid_fold2.h5' } for name, file in hybrid_models.items(): path = os.path.join(model_dir, file) if os.path.exists(path): try: models[name] = load_model(path) st.success(f"Loaded {name}") except Exception as e: st.error(f"Error loading {name}: {str(e)}") else: st.warning(f"Model file not found: {path}") # Traditional models traditional_models = { 'random_forest': 'random_forest_model.pkl', 'xgboost': 'xgboost_model.pkl', } for name, file in traditional_models.items(): path = os.path.join(model_dir, file) if os.path.exists(path): try: models[name] = joblib.load(path) st.success(f"Loaded {name}") except Exception as e: st.error(f"Error loading {name}: {str(e)}") else: st.warning(f"Model file not found: {path}") return models def normalize_url(url): """Normalize URL with proper indentation and parenthesis""" try: is_https = url.lower().startswith('https://') url = url.lower() prefixes = ['http://', 'ftp://', 'www.', 'ww2.', 'web.'] for prefix in prefixes: if url.startswith(prefix): url = url[len(prefix):] if is_https: url = "https://" + url url = url.split('#')[0] if '?' in url: base, query = url.split('?', 1) if not any(sd in base for sd in SAFE_DOMAINS): params = [p for p in query.split('&') if '=' in p] essential_params = [p for p in params if any( kw in p for kw in ['id=', 'ref=', 'token='])] url = base + ('?' + '&'.join(essential_params) if essential_params else '' return re.sub(r'/{2,}', '/', url) except Exception: return url def extract_url_components(url): """Robust URL parsing""" try: extracted = tld_extractor(url) subdomain = extracted.subdomain domain = extracted.domain suffix = extracted.suffix path = "" query = "" if "/" in url: path_start = url.find("/", url.find("//") + 2) if "//" in url else url.find("/") if path_start != -1: path_query = url[path_start:] if "?" in path_query: path, query = path_query.split("?", 1) else: path = path_query if not domain and subdomain: domain_parts = subdomain.split('.') if len(domain_parts) > 1: domain = domain_parts[-1] subdomain = '.'.join(domain_parts[:-1]) return { 'subdomain': subdomain, 'domain': domain, 'suffix': suffix, 'path': path, 'query': query } except: return { 'subdomain': '', 'domain': '', 'suffix': '', 'path': '', 'query': '' } def calculate_entropy(s): """Compute Shannon entropy""" if not s: return 0 try: p, lns = Counter(s), float(len(s)) return -sum(count/lns * math.log(count/lns, 2) for count in p.values()) except: return 0 def fuzzy_domain_match(domain): """Safe domain matching""" if domain in SAFE_DOMAINS: return True domain_parts = domain.split('.') if len(domain_parts) > 2: base_domain = '.'.join(domain_parts[-2:]) if base_domain in SAFE_DOMAINS: return True best_match, score, _ = process.extractOne(domain, SAFE_DOMAINS, scorer=fuzz.WRatio) return score > 85 def extract_robust_features(url): """Feature extraction optimized for CPU""" try: clean_url = re.sub(r'[^\x00-\x7F]+', '', str(url)) normalized = normalize_url(clean_url) components = extract_url_components(clean_url) full_domain = f"{components['domain']}.{components['suffix']}" if components['suffix'] else components['domain'] # Structural features url_length = len(clean_url) domain_length = len(components['domain']) subdomain_count = len(components['subdomain'].split('.')) if components['subdomain'] else 0 path_depth = components['path'].count('/') if components['path'] else 0 param_count = len(components['query'].split('&')) if components['query'] else 0 # Security features has_ip = 1 if re.match(r'^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$', components['domain']) else 0 has_executable = 1 if re.search(r'\.(exe|js|jar|bat|sh|py|dll)$', components['path'], re.I) else 0 has_double_extension = 1 if re.search(r'\.\w+\.\w+$', components['path'], re.I) else 0 hex_encoded = 1 if re.search(r'%[0-9a-f]{2}', normalized, re.I) else 0 # Lexical features digit_count = sum(c.isdigit() for c in normalized) special_chars = sum(not (c.isalnum() or c in ' ./-') for c in normalized) digit_ratio = digit_count / url_length if url_length > 0 else 0 special_char_ratio = special_chars / url_length if url_length > 0 else 0 entropy = calculate_entropy(normalized) # Domain reputation is_safe_domain = 1 if fuzzy_domain_match(full_domain) else 0 is_uncommon_tld = 1 if components['suffix'] and components['suffix'] not in COMMON_TLDS else 0 if url.startswith('https://') and full_domain in SAFE_DOMAINS: is_safe_domain = 1 return { 'url_length': url_length, 'domain_length': domain_length, 'subdomain_count': subdomain_count, 'path_depth': path_depth, 'param_count': param_count, 'has_ip': has_ip, 'has_executable': has_executable, 'has_double_extension': has_double_extension, 'hex_encoded': hex_encoded, 'digit_ratio': digit_ratio, 'special_char_ratio': special_char_ratio, 'entropy': entropy, 'is_safe_domain': is_safe_domain, 'is_uncommon_tld': is_uncommon_tld } except Exception as e: st.error(f"Feature extraction error: {str(e)}") return {col: 0 for col in FIXED_FEATURE_COLS} def preprocess_url(url, char_to_idx): """URL preprocessing for CPU""" try: clean_url = re.sub(r'[^\x00-\x7F]+', '', str(url)) normalized = normalize_url(clean_url) features = extract_robust_features(clean_url) feature_vector = np.array([features.get(col, 0) for col in FIXED_FEATURE_COLS]).reshape(1, -1) char_seq = [char_to_idx.get(c, 0) for c in normalized] char_seq = pad_sequences([char_seq], maxlen=MAX_LEN, padding='post', truncating='post') return char_seq, feature_vector, features except Exception as e: st.error(f"Preprocessing error: {str(e)}") return np.zeros((1, MAX_LEN)), np.zeros((1, len(FIXED_FEATURE_COLS))), {} def weighted_ensemble_predict(models, char_seq, feature_vector, features): """Ensemble prediction for CPU""" predictions = [] weights = { 'hybrid': 0.25, 'hybrid_fold1': 0.20, 'hybrid_fold2': 0.20, 'xgboost': 0.35 } if features.get('is_safe_domain', 0) == 1: return 0.01, [('safe_domain_override', 0.01)] for model_name, model in models.items(): if model_name in weights: try: if 'hybrid' in model_name: proba = model.predict([char_seq, feature_vector], verbose=0)[0][0] else: adjusted_features = feature_vector[:, :14] if feature_vector.shape[1] > 14 else feature_vector proba = model.predict_proba(adjusted_features)[0][1] predictions.append((model_name, proba)) except Exception as e: st.error(f"Prediction error in {model_name}: {str(e)}") if predictions: weighted_sum = sum(p * weights.get(name, 0) for name, p in predictions) total_weight = sum(weights.get(name, 0) for name, _ in predictions) avg_proba = weighted_sum / total_weight if total_weight > 0 else sum(p for _, p in predictions) / len(predictions) else: avg_proba = 0.5 return avg_proba, predictions def analyze_single_url(url, char_to_idx, models): """Analyze a single URL""" with st.spinner(f"Analyzing URL: {url[:50]}..."): start_time = time.time() char_seq, feature_vector, features = preprocess_url(url, char_to_idx) ensemble_proba, model_predictions = weighted_ensemble_predict( models, char_seq, feature_vector, features) processing_time = time.time() - start_time st.subheader("Analysis Results") col1, col2 = st.columns([1, 2]) with col1: if ensemble_proba >= 0.5: st.error(f"🔴 **Threat Detected!** (Probability: {ensemble_proba:.4f})") else: st.success(f"🟢 **Safe URL** (Probability: {ensemble_proba:.4f})") st.metric("Processing Time", f"{processing_time*1000:.2f} ms") st.subheader("Key Features") st.json({ "URL Length": features.get('url_length', 0), "Domain Length": features.get('domain_length', 0), "Subdomains": features.get('subdomain_count', 0), "Path Depth": features.get('path_depth', 0), "Parameters": features.get('param_count', 0), "Contains IP": bool(features.get('has_ip', 0)), "Contains Executable": bool(features.get('has_executable', 0)), "Double Extension": bool(features.get('has_double_extension', 0)), "Hex Encoded": bool(features.get('hex_encoded', 0)), "Safe Domain": bool(features.get('is_safe_domain', 0)), "Uncommon TLD": bool(features.get('is_uncommon_tld', 0)), "Entropy": features.get('entropy', 0) }) with col2: st.subheader("Model Predictions") model_df = pd.DataFrame(model_predictions, columns=['Model', 'Probability']) model_df['Prediction'] = model_df['Probability'].apply( lambda x: "MALICIOUS" if x >= 0.5 else "SAFE") st.bar_chart(model_df.set_index('Model')['Probability']) st.write("Detailed Model Results:") for model_name, proba in model_predictions: pred = "MALICIOUS" if proba >= 0.5 else "SAFE" st.write(f"- **{model_name}**: {proba:.4f} ({pred})") def analyze_batch_urls(urls, char_to_idx, models): """Analyze multiple URLs""" results = [] progress_bar = st.progress(0) status_text = st.empty() for i, url in enumerate(urls): status_text.text(f"Processing {i+1}/{len(urls)}: {url[:50]}...") progress_bar.progress((i + 1) / len(urls)) try: char_seq, feature_vector, features = preprocess_url(url, char_to_idx) ensemble_proba, _ = weighted_ensemble_predict(models, char_seq, feature_vector, features) results.append({ 'URL': url, 'Threat Probability': ensemble_proba, 'Classification': "MALICIOUS" if ensemble_proba >= 0.5 else "SAFE" }) except Exception as e: st.error(f"Error processing {url}: {str(e)}") if results: results_df = pd.DataFrame(results) st.dataframe(results_df) csv = results_df.to_csv(index=False).encode('utf-8') st.download_button( "Download Results", csv, "url_analysis_results.csv", "text/csv", key='download-csv' ) def main(): st.title("🛡️ URL Threat Detector (CPU Version)") st.markdown(""" This tool analyzes URLs using machine learning models to detect potential threats. Optimized for CPU-only environments. """) with st.sidebar: st.header("About") st.markdown(""" - **Models**: Hybrid CNN+MLP, XGBoost - **Features**: URL structure, lexical patterns, domain reputation - **Environment**: CPU-only """) st.header("Example URLs") st.code("https://paypal-security-alert.com/login") st.code("https://github.com/features/actions") # Load resources with st.spinner("Loading models..."): char_to_idx = load_char_mapping() models = load_all_models() if not char_to_idx or not models: st.error("Failed to load required resources. Please check the model files.") return # URL input st.subheader("Single URL Analysis") url_input = st.text_input("Enter URL to analyze:", placeholder="https://example.com", label_visibility="visible") if st.button("Analyze URL") and url_input: analyze_single_url(url_input, char_to_idx, models) # Batch analysis st.subheader("Batch Analysis") uploaded_file = st.file_uploader("Upload a text file with URLs (one per line)", type=['txt', 'csv']) if uploaded_file is not None: urls = [line.decode('utf-8').strip() for line in uploaded_file if line.strip()] if urls and st.button("Analyze All URLs"): analyze_batch_urls(urls, char_to_idx, models) if __name__ == "__main__": # Configure TensorFlow logging os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' tf.get_logger().setLevel('ERROR') # Run the app main()