NormalCrafter / app.py
fffiloni's picture
disable examples caching to avoid failing Zero GPU worker
9848a2c verified
raw
history blame
7.31 kB
import gc
import os
import numpy as np
import spaces
import gradio as gr
import torch
from diffusers.training_utils import set_seed
from diffusers import AutoencoderKLTemporalDecoder
from normalcrafter.normal_crafter_ppl import NormalCrafterPipeline
from normalcrafter.unet import DiffusersUNetSpatioTemporalConditionModelNormalCrafter
import uuid
import random
from huggingface_hub import hf_hub_download
from normalcrafter.utils import read_video_frames, vis_sequence_normal, save_video
examples = [
["examples/example_01.mp4", 1024, -1, -1],
["examples/example_02.mp4", 1024, -1, -1],
["examples/example_03.mp4", 1024, -1, -1],
["examples/example_04.mp4", 1024, -1, -1],
# ["examples/example_05.mp4", 1024, -1, -1],
# ["examples/example_06.mp4", 1024, -1, -1],
]
pretrained_model_name_or_path = "Yanrui95/NormalCrafter"
weight_dtype = torch.float16
unet = DiffusersUNetSpatioTemporalConditionModelNormalCrafter.from_pretrained(
pretrained_model_name_or_path,
subfolder="unet",
low_cpu_mem_usage=True,
)
vae = AutoencoderKLTemporalDecoder.from_pretrained(
pretrained_model_name_or_path, subfolder="vae")
vae.to(dtype=weight_dtype)
unet.to(dtype=weight_dtype)
pipe = NormalCrafterPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid-xt",
unet=unet,
vae=vae,
torch_dtype=weight_dtype,
variant="fp16",
)
pipe.to("cuda")
@spaces.GPU(duration=120)
def infer_depth(
video: str,
max_res: int = 1024,
process_length: int = -1,
target_fps: int = -1,
#
save_folder: str = "./demo_output",
window_size: int = 14,
time_step_size: int = 10,
decode_chunk_size: int = 7,
seed: int = 42,
save_npz: bool = False,
):
set_seed(seed)
pipe.enable_xformers_memory_efficient_attention()
frames, target_fps = read_video_frames(video, process_length, target_fps, max_res)
# inference the depth map using the DepthCrafter pipeline
with torch.inference_mode():
res = pipe(
frames,
decode_chunk_size=decode_chunk_size,
time_step_size=time_step_size,
window_size=window_size,
).frames[0]
# visualize the depth map and save the results
vis = vis_sequence_normal(res)
# save the depth map and visualization with the target FPS
save_path = os.path.join(save_folder, os.path.splitext(os.path.basename(video))[0])
print(f"==> saving results to {save_path}")
os.makedirs(os.path.dirname(save_path), exist_ok=True)
if save_npz:
np.savez_compressed(save_path + ".npz", normal=res)
save_video(vis, save_path + "_vis.mp4", fps=target_fps)
save_video(frames, save_path + "_input.mp4", fps=target_fps)
# clear the cache for the next video
gc.collect()
torch.cuda.empty_cache()
return [
save_path + "_input.mp4",
save_path + "_vis.mp4",
]
def construct_demo():
with gr.Blocks(analytics_enabled=False) as depthcrafter_iface:
gr.Markdown(
"""
<div align='center'> <h1> NormalCrafter: Learning Temporally Consistent Video Normal from Video Diffusion Priors </span> </h1> \
<a style='font-size:18px;color: #000000'>If you find NormalCrafter useful, please help ⭐ the </a>\
<a style='font-size:18px;color: #FF5DB0' href='https://github.com/Binyr/NormalCrafter'>[Github Repo]</a>\
<a style='font-size:18px;color: #000000'>, which is important to Open-Source projects. Thanks!</a>\
<a style='font-size:18px;color: #000000' href='https://arxiv.org/abs/xxx'> [ArXiv] </a>\
<a style='font-size:18px;color: #000000' href='https://normalcrafter.github.io/'> [Project Page] </a> </div>
"""
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
input_video = gr.Video(label="Input Video")
# with gr.Tab(label="Output"):
with gr.Column(scale=2):
with gr.Row(equal_height=True):
output_video_1 = gr.Video(
label="Preprocessed Video",
interactive=False,
autoplay=True,
loop=True,
show_share_button=True,
scale=5,
)
output_video_2 = gr.Video(
label="Generated Normal Video",
interactive=False,
autoplay=True,
loop=True,
show_share_button=True,
scale=5,
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Row(equal_height=False):
with gr.Accordion("Advanced Settings", open=False):
max_res = gr.Slider(
label="Max Resolution",
minimum=512,
maximum=1024,
value=1024,
step=64,
)
process_length = gr.Slider(
label="Process Length",
minimum=-1,
maximum=280,
value=60,
step=1,
)
process_target_fps = gr.Slider(
label="Target FPS",
minimum=-1,
maximum=30,
value=15,
step=1,
)
generate_btn = gr.Button("Generate")
with gr.Column(scale=2):
pass
gr.Examples(
examples=examples,
inputs=[
input_video,
max_res,
process_length,
process_target_fps,
],
outputs=[output_video_1, output_video_2],
fn=infer_depth,
cache_examples=False,
)
# gr.Markdown(
# """
# <span style='font-size:18px;color: #E7CCCC'>Note:
# For time quota consideration, we set the default parameters to be more efficient here,
# with a trade-off of shorter video length and slightly lower quality.
# You may adjust the parameters according to our
# <a style='font-size:18px;color: #FF5DB0' href='https://github.com/Tencent/DepthCrafter'>[Github Repo]</a>
# for better results if you have enough time quota.
# </span>
# """
# )
generate_btn.click(
fn=infer_depth,
inputs=[
input_video,
max_res,
process_length,
process_target_fps,
],
outputs=[output_video_1, output_video_2],
)
return depthcrafter_iface
if __name__ == "__main__":
demo = construct_demo()
demo.queue()
# demo.launch(server_name="0.0.0.0", server_port=12345, debug=True, share=False)
demo.launch(share=True)