CycleGAN / util /util.py
Yanguan's picture
0
58da73e
"""功能函数
"""
from __future__ import print_function
import os
import numpy as np
import torch
from PIL import Image
from torch import tensor
def tensor2im(input_image: tensor, imtype=np.uint8):
""" "Converts a Tensor array into a numpy image array.
Parameters:
input_image (tensor) -- the input image tensor array
imtype (type) -- the desired type of the converted numpy array
"""
if len(input_image.size()) == 3:
input_image = input_image.unsqueeze(0)
if not isinstance(input_image, np.ndarray):
if isinstance(input_image, torch.Tensor): # get the data from a variable
image_tensor = input_image.data
else:
return input_image
# convert it into a numpy array
image_numpy = image_tensor[0].cpu().float().numpy()
if image_numpy.shape[0] == 1: # grayscale to RGB
image_numpy = np.tile(image_numpy, (3, 1, 1))
image_numpy = (
(np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
) # post-processing: tranpose and scaling
else: # if it is a numpy array, do nothing
image_numpy = input_image
return image_numpy.astype(imtype)
def diagnose_network(net, name="network"):
"""Calculate and print the mean of average absolute(gradients)
Parameters:
net (torch network) -- Torch network
name (str) -- the name of the network
"""
mean = 0.0
count = 0
for param in net.parameters():
if param.grad is not None:
mean += torch.mean(torch.abs(param.grad.data))
count += 1
if count > 0:
mean = mean / count
print(name)
print(mean)
def save_image(image_numpy, image_path, aspect_ratio=1.0):
"""Save a numpy image to the disk
Parameters:
aspect_ratio:
image_numpy (numpy array) -- input numpy array
image_path (str) -- the path of the image
"""
image_pil = Image.fromarray(image_numpy)
h, w, _ = image_numpy.shape
if aspect_ratio > 1.0:
image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.BICUBIC)
if aspect_ratio < 1.0:
image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.BICUBIC)
image_pil.save(image_path)
def print_numpy(x, val=True, shp=False):
"""Print the mean, min, max, median, std, and size of a numpy array
Parameters:
x: (np.array)
val (bool) -- if print the values of the numpy array
shp (bool) -- if print the shape of the numpy array
"""
x = x.astype(np.float64)
if shp:
print("shape,", x.shape)
if val:
x = x.flatten()
print(
"mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f"
% (np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))
)
def mkdirs(paths):
"""create empty directories if they don't exist
Parameters:
paths (str list) -- a list of directory paths
"""
if isinstance(paths, list) and not isinstance(paths, str):
for path in paths:
mkdir(path)
else:
mkdir(paths)
def mkdir(path):
"""create a single empty directory if it didn't exist
Parameters:
path (str) -- a single directory path
"""
if not os.path.exists(path):
os.makedirs(path)
def show_image(image_numpy, aspect_ratio=1.0):
"""Save a numpy image to the disk
Parameters:
aspect_ratio:
image_numpy (numpy array) -- input numpy array
"""
image_pil = Image.fromarray(image_numpy)
h, w, _ = image_numpy.shape
if aspect_ratio > 1.0:
image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.BICUBIC)
if aspect_ratio < 1.0:
image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.BICUBIC)
# image_pil.save(image_path)
image_pil.show()