|
import os |
|
from pathlib import Path |
|
from data.base_dataset import BaseDataset, get_transform |
|
from data.image_folder import make_dataset |
|
from PIL import Image |
|
import random |
|
|
|
|
|
class UnalignedDataset(BaseDataset): |
|
""" |
|
This dataset class can load unaligned/unpaired datasets. |
|
|
|
It requires two directories to host training images from domain A '/path/to/data/trainA' |
|
and from domain B '/path/to/data/trainB' respectively. |
|
You can train the model with the dataset flag '--dataroot /path/to/data'. |
|
Similarly, you need to prepare two directories: |
|
'/path/to/data/testA' and '/path/to/data/testB' during test time. |
|
""" |
|
|
|
def __init__(self, opt): |
|
"""Initialize this dataset class. |
|
|
|
Parameters: |
|
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions |
|
""" |
|
BaseDataset.__init__(self, opt) |
|
self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') |
|
self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') |
|
|
|
self.A_paths = sorted(make_dataset(self.dir_A, opt.max_dataset_size)) |
|
self.B_paths = sorted(make_dataset(self.dir_B, opt.max_dataset_size)) |
|
self.A_size = len(self.A_paths) |
|
self.B_size = len(self.B_paths) |
|
btoA = self.opt.direction == 'BtoA' |
|
input_nc = self.opt.output_nc if btoA else self.opt.input_nc |
|
output_nc = self.opt.input_nc if btoA else self.opt.output_nc |
|
self.transform_A = get_transform(self.opt, grayscale=(input_nc == 1)) |
|
self.transform_B = get_transform(self.opt, grayscale=(output_nc == 1)) |
|
|
|
def __getitem__(self, index): |
|
"""Return a data point and its metadata information. |
|
|
|
Parameters: |
|
index (int) -- a random integer for data indexing |
|
|
|
Returns a dictionary that contains A, B, A_paths and B_paths |
|
A (tensor) -- an image in the input domain |
|
B (tensor) -- its corresponding image in the target domain |
|
A_paths (str) -- image paths |
|
B_paths (str) -- image paths |
|
""" |
|
A_path = self.A_paths[index % self.A_size] |
|
if self.opt.serial_batches: |
|
index_B = index % self.B_size |
|
else: |
|
index_B = random.randint(0, self.B_size - 1) |
|
B_path = self.B_paths[index_B] |
|
A_img = Image.open(A_path).convert('RGB') |
|
B_img = Image.open(B_path).convert('RGB') |
|
|
|
A = self.transform_A(A_img) |
|
B = self.transform_B(B_img) |
|
|
|
return {'A': A, 'B': B, 'A_paths': A_path, 'B_paths': B_path} |
|
|
|
def __len__(self): |
|
"""Return the total number of images in the dataset. |
|
|
|
As we have two datasets with potentially different number of images, |
|
we take a maximum of them |
|
""" |
|
return max(self.A_size, self.B_size) |
|
|