YouLiXiya's picture
Upload 22 files
7dbe662
raw
history blame
15.4 kB
from typing import Optional, Tuple, Union, List
import numpy as np
import PIL
from PIL.Image import Image
import supervision as sv
import torch
from torch import nn
from transformers import OwlViTProcessor, OwlViTForObjectDetection, OwlViTVisionModel
from transformers.models.owlvit.modeling_owlvit import center_to_corners_format, box_iou, generalized_box_iou, OwlViTObjectDetectionOutput
from sam_extension.pipeline.base import Pipeline, Output
class OwlViTVisionEncoderPipeline(Pipeline):
def __init__(self,
vision_model,
layer_norm,
processor,
device='cuda',
*args,
**kwargs):
super().__init__(*args, **kwargs)
self.vision_model = vision_model
self.layer_norm = layer_norm
self.processor = processor
self.device = device
torch.cuda.empty_cache()
@classmethod
def from_pretrained(cls, model_type, device='cuda', *args, **kwargs):
owlvit_for_object_detection = OwlViTForObjectDetection.from_pretrained(model_type).to(device)
processor = OwlViTProcessor.from_pretrained(model_type)
return cls(owlvit_for_object_detection.owlvit.vision_model,
owlvit_for_object_detection.layer_norm,
processor,
device,
*args,
**kwargs)
def process_image(self, image:Image):
image = self.processor(images=image, return_tensors="pt").pixel_values.to(self.device)
return image
@torch.no_grad()
def forward(
self,
pixel_values: Union[torch.FloatTensor, Image] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
if isinstance(pixel_values, Image):
pixel_values = self.process_image(pixel_values)
pixel_values = pixel_values.to(self.device)
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Get image embeddings
last_hidden_state = vision_outputs[0]
image_embeds = self.vision_model.post_layernorm(last_hidden_state)
new_size = tuple(np.array(image_embeds.shape) - np.array((0, 1, 0)))
class_token_out = torch.broadcast_to(image_embeds[:, :1, :], new_size)
# Merge image embedding with class tokens
image_embeds = image_embeds[:, 1:, :] * class_token_out
image_embeds = self.layer_norm(image_embeds)
# Resize to [batch_size, num_patches, num_patches, hidden_size]
new_size = (
image_embeds.shape[0],
int(np.sqrt(image_embeds.shape[1])),
int(np.sqrt(image_embeds.shape[1])),
image_embeds.shape[-1],
)
image_embeds = image_embeds.reshape(new_size)
return image_embeds
class OwlViTDecoderPipeline(Pipeline):
prompt_template: str = 'a photo of a '
def __init__(self,
owlvit_text,
text_projection,
class_head,
box_head,
processor,
device='cuda',
*args,
**kwargs):
super().__init__(*args, **kwargs)
self.owlvit_text = owlvit_text
self.text_projection = text_projection
self.class_head = class_head
self.box_head = box_head
self.sigmoid = nn.Sigmoid()
self.processor = processor
self.device = device
torch.cuda.empty_cache()
@classmethod
def from_pretrained(cls, model_type, device='cuda', *args, **kwargs):
owlvit_for_object_detection = OwlViTForObjectDetection.from_pretrained(model_type).to(device)
processor = OwlViTProcessor.from_pretrained(model_type)
return cls(owlvit_for_object_detection.owlvit.text_model,
owlvit_for_object_detection.owlvit.text_projection,
owlvit_for_object_detection.class_head,
owlvit_for_object_detection.box_head,
processor,
device,
*args,
**kwargs)
def set_template(self, template: str):
self.prompt_template = template
def process_text(self, text:List, use_template:bool = True):
if use_template:
text = [[self.prompt_template+i for i in text[0]]]
inputs = self.processor(text=text, return_tensors="pt")
return inputs
def normalize_grid_corner_coordinates(self, feature_map: torch.FloatTensor):
# Computes normalized xy corner coordinates from feature_map.
if not feature_map.ndim == 4:
raise ValueError("Expected input shape is [batch_size, num_patches, num_patches, hidden_dim]")
device = feature_map.device
num_patches = feature_map.shape[1]
box_coordinates = np.stack(
np.meshgrid(np.arange(1, num_patches + 1), np.arange(1, num_patches + 1)), axis=-1
).astype(np.float32)
box_coordinates /= np.array([num_patches, num_patches], np.float32)
# Flatten (h, w, 2) -> (h*w, 2)
box_coordinates = box_coordinates.reshape(
box_coordinates.shape[0] * box_coordinates.shape[1], box_coordinates.shape[2]
)
box_coordinates = torch.from_numpy(box_coordinates).to(device)
return box_coordinates
def compute_box_bias(self, feature_map: torch.FloatTensor) -> torch.FloatTensor:
# The box center is biased to its position on the feature grid
box_coordinates = self.normalize_grid_corner_coordinates(feature_map)
box_coordinates = torch.clip(box_coordinates, 0.0, 1.0)
# Unnormalize xy
box_coord_bias = torch.log(box_coordinates + 1e-4) - torch.log1p(-box_coordinates + 1e-4)
# The box size is biased to the patch size
box_size = torch.full_like(box_coord_bias, 1.0 / feature_map.shape[-2])
box_size_bias = torch.log(box_size + 1e-4) - torch.log1p(-box_size + 1e-4)
# Compute box bias
box_bias = torch.cat([box_coord_bias, box_size_bias], dim=-1)
return box_bias
def box_predictor(
self,
image_feats: torch.FloatTensor,
feature_map: torch.FloatTensor,
) -> torch.FloatTensor:
"""
Args:
image_feats:
Features extracted from the image, returned by the `image_text_embedder` method.
feature_map:
A spatial re-arrangement of image_features, also returned by the `image_text_embedder` method.
Returns:
pred_boxes:
List of predicted boxes (cxcywh normalized to 0, 1) nested within a dictionary.
"""
# Bounding box detection head [batch_size, num_boxes, 4].
pred_boxes = self.box_head(image_feats)
# Compute the location of each token on the grid and use it to compute a bias for the bbox prediction
pred_boxes += self.compute_box_bias(feature_map)
pred_boxes = self.sigmoid(pred_boxes)
return pred_boxes
def class_predictor(
self,
image_feats: torch.FloatTensor,
query_embeds: Optional[torch.FloatTensor] = None,
query_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.FloatTensor]:
"""
Args:
image_feats:
Features extracted from the `image_text_embedder`.
query_embeds:
Text query embeddings.
query_mask:
Must be provided with query_embeddings. A mask indicating which query embeddings are valid.
"""
(pred_logits, image_class_embeds) = self.class_head(image_feats, query_embeds, query_mask)
return (pred_logits, image_class_embeds)
def image_text_embedder(
self,
input_ids: torch.Tensor,
image_embeds: torch.FloatTensor,
attention_mask: torch.Tensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> Tuple[torch.FloatTensor]:
# Encode text and image
text_outputs = self.owlvit_text(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
text_embeds = text_outputs[1]
text_embeds = self.text_projection(text_embeds)
text_embeds = text_embeds / torch.linalg.norm(text_embeds, ord=2, dim=-1, keepdim=True)
return (text_embeds, image_embeds, text_outputs)
def embed_image_query(
self, query_image_features: torch.FloatTensor, query_feature_map: torch.FloatTensor
) -> torch.FloatTensor:
_, class_embeds = self.class_predictor(query_image_features)
pred_boxes = self.box_predictor(query_image_features, query_feature_map)
pred_boxes_as_corners = center_to_corners_format(pred_boxes)
# Loop over query images
best_class_embeds = []
best_box_indices = []
pred_boxes_device = pred_boxes_as_corners.device
for i in range(query_image_features.shape[0]):
each_query_box = torch.tensor([[0, 0, 1, 1]], device=pred_boxes_device)
each_query_pred_boxes = pred_boxes_as_corners[i]
ious, _ = box_iou(each_query_box, each_query_pred_boxes)
# If there are no overlapping boxes, fall back to generalized IoU
if torch.all(ious[0] == 0.0):
ious = generalized_box_iou(each_query_box, each_query_pred_boxes)
# Use an adaptive threshold to include all boxes within 80% of the best IoU
iou_threshold = torch.max(ious) * 0.8
selected_inds = (ious[0] >= iou_threshold).nonzero()
if selected_inds.numel():
selected_embeddings = class_embeds[i][selected_inds[0]]
mean_embeds = torch.mean(class_embeds[i], axis=0)
mean_sim = torch.einsum("d,id->i", mean_embeds, selected_embeddings)
best_box_ind = selected_inds[torch.argmin(mean_sim)]
best_class_embeds.append(class_embeds[i][best_box_ind])
best_box_indices.append(best_box_ind)
if best_class_embeds:
query_embeds = torch.stack(best_class_embeds)
box_indices = torch.stack(best_box_indices)
else:
query_embeds, box_indices = None, None
return query_embeds, box_indices, pred_boxes
@torch.no_grad()
def forward(
self,
image_embeds: torch.FloatTensor,
input_ids: Optional[torch.Tensor] = None,
text: Optional[List] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> OwlViTObjectDetectionOutput:
if text is not None:
inputs = self.process_text(text)
input_ids = inputs.input_ids.to(self.device)
attention_mask = inputs.attention_mask.to(self.device)
input_ids = input_ids.to(self.device)
image_embeds = image_embeds.to(self.device)
attention_mask = attention_mask.to(self.device)
output_attentions = output_attentions if output_attentions is not None else False
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else False
)
return_dict = return_dict if return_dict is not None else True
# Embed images and text queries
query_embeds, feature_map, text_outputs = self.image_text_embedder(
input_ids=input_ids,
image_embeds=image_embeds,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
# Text and vision model outputs
batch_size, num_patches, num_patches, hidden_dim = feature_map.shape
image_feats = torch.reshape(feature_map, (batch_size, num_patches * num_patches, hidden_dim))
# Reshape from [batch_size * max_text_queries, hidden_dim] -> [batch_size, max_text_queries, hidden_dim]
max_text_queries = input_ids.shape[0] // batch_size
query_embeds = query_embeds.reshape(batch_size, max_text_queries, query_embeds.shape[-1])
# If first token is 0, then this is a padded query [batch_size, num_queries].
input_ids = input_ids.reshape(batch_size, max_text_queries, input_ids.shape[-1])
query_mask = input_ids[..., 0] > 0
# Predict object classes [batch_size, num_patches, num_queries+1]
(pred_logits, class_embeds) = self.class_predictor(image_feats, query_embeds, query_mask)
# Predict object boxes
pred_boxes = self.box_predictor(image_feats, feature_map)
if not return_dict:
output = (
pred_logits,
pred_boxes,
query_embeds,
feature_map,
class_embeds,
text_outputs.to_tuple(),
None,
)
output = tuple(x for x in output if x is not None)
return output
return OwlViTObjectDetectionOutput(
image_embeds=feature_map,
text_embeds=query_embeds,
pred_boxes=pred_boxes.cpu(),
logits=pred_logits.cpu(),
class_embeds=class_embeds,
text_model_output=text_outputs,
vision_model_output=None,
)
def owlvit_visualize(self,
image: Image,
texts: List,
owlvit_objectdetection_output: OwlViTObjectDetectionOutput,
score_threshold: float = 0.1,
pil=True):
target_sizes = torch.Tensor([image.size[::-1]])
# Convert outputs (bounding boxes and class logits) to COCO API
results = self.processor.post_process(outputs=owlvit_objectdetection_output, target_sizes=target_sizes)
text = texts[0]
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
boxes_np = []
labels_list = []
# Print detected objects and rescaled box coordinates
for box, score, label in zip(boxes, scores, labels):
box = [int(i) for i in box.tolist()]
if score >= score_threshold:
labels_list.append(f"{text[label]} {round(score.item(), 3)}")
boxes_np.append(box)
print(f"Detected {text[label]} with confidence {round(score.item(), 3)} at location {box}")
boxes_np = np.array(boxes_np)
detections = sv.Detections(xyxy=boxes_np)
image_np = np.uint8(image)[:, :, ::-1]
box_annotator = sv.BoxAnnotator()
annotated_frame = box_annotator.annotate(scene=image_np.copy(), detections=detections, labels=labels_list)
if pil:
return PIL.Image.fromarray(annotated_frame[:, :, ::-1])
else:
return annotated_frame[:, :, ::-1]