Spaces:
Runtime error
Runtime error
john
commited on
Commit
•
dacf472
1
Parent(s):
41413cf
Update app.py
Browse files
app.py
CHANGED
@@ -1,150 +1,44 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
import cv2
|
4 |
import gradio as gr
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
# def inference(img, version, scale, weight):
|
48 |
-
def inference(img, version, scale):
|
49 |
-
# weight /= 100
|
50 |
-
print(img, version, scale)
|
51 |
-
if scale > 4:
|
52 |
-
scale = 4 # avoid too large scale value
|
53 |
-
try:
|
54 |
-
extension = os.path.splitext(os.path.basename(str(img)))[1]
|
55 |
-
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
|
56 |
-
if len(img.shape) == 3 and img.shape[2] == 4:
|
57 |
-
img_mode = 'RGBA'
|
58 |
-
elif len(img.shape) == 2: # for gray inputs
|
59 |
-
img_mode = None
|
60 |
-
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
61 |
-
else:
|
62 |
-
img_mode = None
|
63 |
-
|
64 |
-
h, w = img.shape[0:2]
|
65 |
-
if h > 3500 or w > 3500:
|
66 |
-
print('too large size')
|
67 |
-
return None, None
|
68 |
-
|
69 |
-
if h < 300:
|
70 |
-
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
71 |
-
|
72 |
-
if version == 'v1.2':
|
73 |
-
face_enhancer = GFPGANer(
|
74 |
-
model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
75 |
-
elif version == 'v1.3':
|
76 |
-
face_enhancer = GFPGANer(
|
77 |
-
model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
78 |
-
elif version == 'v1.4':
|
79 |
-
face_enhancer = GFPGANer(
|
80 |
-
model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
81 |
-
elif version == 'RestoreFormer':
|
82 |
-
face_enhancer = GFPGANer(
|
83 |
-
model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
|
84 |
-
# elif version == 'CodeFormer':
|
85 |
-
# face_enhancer = GFPGANer(
|
86 |
-
# model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler)
|
87 |
-
|
88 |
-
try:
|
89 |
-
# _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
|
90 |
-
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
91 |
-
except RuntimeError as error:
|
92 |
-
print('Error', error)
|
93 |
-
|
94 |
-
try:
|
95 |
-
if scale != 2:
|
96 |
-
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
97 |
-
h, w = img.shape[0:2]
|
98 |
-
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
|
99 |
-
except Exception as error:
|
100 |
-
print('wrong scale input.', error)
|
101 |
-
if img_mode == 'RGBA': # RGBA images should be saved in png format
|
102 |
-
extension = 'png'
|
103 |
-
else:
|
104 |
-
extension = 'jpg'
|
105 |
-
save_path = f'output/out.{extension}'
|
106 |
-
cv2.imwrite(save_path, output)
|
107 |
-
|
108 |
-
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
109 |
-
return output, save_path
|
110 |
-
except Exception as error:
|
111 |
-
print('global exception', error)
|
112 |
-
return None, None
|
113 |
-
|
114 |
-
|
115 |
-
title = "GFPGAN: Practical Face Restoration Algorithm"
|
116 |
-
description = r"""Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>.<br>
|
117 |
-
It can be used to restore your **old photos** or improve **AI-generated faces**.<br>
|
118 |
-
To use it, simply upload your image.<br>
|
119 |
-
If GFPGAN is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo</a> and recommend it to your friends 😊
|
120 |
-
"""
|
121 |
-
article = r"""
|
122 |
-
|
123 |
-
[![download](https://img.shields.io/github/downloads/TencentARC/GFPGAN/total.svg)](https://github.com/TencentARC/GFPGAN/releases)
|
124 |
-
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social)](https://github.com/TencentARC/GFPGAN)
|
125 |
-
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2101.04061)
|
126 |
-
|
127 |
-
If you have any question, please email 📧 `xintao.wang@outlook.com` or `xintaowang@tencent.com`.
|
128 |
-
|
129 |
-
<center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>
|
130 |
-
<center><img src='https://visitor-badge.glitch.me/badge?page_id=Gradio_Xintao_GFPGAN' alt='visitor badge'></center>
|
131 |
-
"""
|
132 |
-
demo = gr.Interface(
|
133 |
-
inference, [
|
134 |
-
gr.Image(type="filepath", label="Input"),
|
135 |
-
# gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer'], type="value", value='v1.4', label='version'),
|
136 |
-
gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], type="value", value='v1.4', label='version'),
|
137 |
-
gr.Number(label="Rescaling factor", value=2),
|
138 |
-
# gr.Slider(0, 100, label='Weight, only for CodeFormer. 0 for better quality, 100 for better identity', value=50)
|
139 |
-
], [
|
140 |
-
gr.Image(type="numpy", label="Output (The whole image)"),
|
141 |
-
gr.File(label="Download the output image")
|
142 |
-
],
|
143 |
-
title=title,
|
144 |
-
description=description,
|
145 |
-
article=article,
|
146 |
-
# examples=[['AI-generate.jpg', 'v1.4', 2, 50], ['lincoln.jpg', 'v1.4', 2, 50], ['Blake_Lively.jpg', 'v1.4', 2, 50],
|
147 |
-
# ['10045.png', 'v1.4', 2, 50]]).launch()
|
148 |
-
examples=[['AI-generate.jpg', 'v1.4', 2], ['lincoln.jpg', 'v1.4', 2], ['Blake_Lively.jpg', 'v1.4', 2],
|
149 |
-
['10045.png', 'v1.4', 2]])
|
150 |
-
demo.queue().launch()
|
|
|
1 |
import os
|
|
|
|
|
2 |
import gradio as gr
|
3 |
+
from llama_cpp import Llama
|
4 |
+
import random
|
5 |
+
!wget https://huggingface.co/TheBloke/Nous-Hermes-13B-GGML/resolve/main/nous-hermes-13b.ggmlv3.q2_K.bin
|
6 |
+
llm = Llama(model_path="nous-hermes-13b.ggmlv3.q2_K.bin", seed=random.randint(1, 2**31))
|
7 |
+
|
8 |
+
with gr.Blocks() as demo:
|
9 |
+
chatbot = gr.Chatbot()
|
10 |
+
msg = gr.Textbox()
|
11 |
+
clear = gr.ClearButton([msg, chatbot])
|
12 |
+
#instruction = gr.Textbox(label="Instruction", placeholder=)
|
13 |
+
|
14 |
+
def user(user_message, history):
|
15 |
+
return gr.update(value="", interactive=True), history + [[user_message, None]]
|
16 |
+
|
17 |
+
def bot(history):
|
18 |
+
#instruction = history[-1][1] or ""
|
19 |
+
user_message = history[-1][0]
|
20 |
+
#token1 = llm.tokenize(b"### Instruction: ")
|
21 |
+
#token2 = llm.tokenize(instruction.encode())
|
22 |
+
token3 = llm.tokenize(b"### Input: ")
|
23 |
+
tokens3 = llm.tokenize(user_message.encode())
|
24 |
+
token4 = llm.tokenize(b"### Response:")
|
25 |
+
tokens = token3 + tokens3 + token4
|
26 |
+
history[-1][1] = ""
|
27 |
+
count = 0
|
28 |
+
output = ""
|
29 |
+
for token in llm.generate(tokens, top_k=50, top_p=0.73, temp=0.72, repeat_penalty=1.1):
|
30 |
+
text = llm.detokenize([token])
|
31 |
+
output += text.decode()
|
32 |
+
count += 1
|
33 |
+
if count >= 500 or (token == llm.token_eos()):
|
34 |
+
break
|
35 |
+
history[-1][1] += text.decode()
|
36 |
+
yield history
|
37 |
+
|
38 |
+
response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
39 |
+
bot, chatbot, chatbot
|
40 |
+
)
|
41 |
+
response.then(lambda: gr.update(interactive=True), None, [msg], queue=False)
|
42 |
+
|
43 |
+
demo.queue()
|
44 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|