Spaces:
Runtime error
Runtime error
# Ultralytics YOLO π, AGPL-3.0 license | |
import math | |
import cv2 | |
from ultralytics.utils.checks import check_imshow | |
from ultralytics.utils.plotting import Annotator, colors | |
class DistanceCalculation: | |
"""A class to calculate distance between two objects in a real-time video stream based on their tracks.""" | |
def __init__( | |
self, | |
names, | |
pixels_per_meter=10, | |
view_img=False, | |
line_thickness=2, | |
line_color=(255, 255, 0), | |
centroid_color=(255, 0, 255), | |
): | |
""" | |
Initializes the DistanceCalculation class with the given parameters. | |
Args: | |
names (dict): Dictionary mapping class indices to class names. | |
pixels_per_meter (int, optional): Conversion factor from pixels to meters. Defaults to 10. | |
view_img (bool, optional): Flag to indicate if the video stream should be displayed. Defaults to False. | |
line_thickness (int, optional): Thickness of the lines drawn on the image. Defaults to 2. | |
line_color (tuple, optional): Color of the lines drawn on the image (BGR format). Defaults to (255, 255, 0). | |
centroid_color (tuple, optional): Color of the centroids drawn (BGR format). Defaults to (255, 0, 255). | |
""" | |
# Visual & image information | |
self.im0 = None | |
self.annotator = None | |
self.view_img = view_img | |
self.line_color = line_color | |
self.centroid_color = centroid_color | |
# Prediction & tracking information | |
self.clss = None | |
self.names = names | |
self.boxes = None | |
self.line_thickness = line_thickness | |
self.trk_ids = None | |
# Distance calculation information | |
self.centroids = [] | |
self.pixel_per_meter = pixels_per_meter | |
# Mouse event information | |
self.left_mouse_count = 0 | |
self.selected_boxes = {} | |
# Check if environment supports imshow | |
self.env_check = check_imshow(warn=True) | |
def mouse_event_for_distance(self, event, x, y, flags, param): | |
""" | |
Handles mouse events to select regions in a real-time video stream. | |
Args: | |
event (int): Type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.). | |
x (int): X-coordinate of the mouse pointer. | |
y (int): Y-coordinate of the mouse pointer. | |
flags (int): Flags associated with the event (e.g., cv2.EVENT_FLAG_CTRLKEY, cv2.EVENT_FLAG_SHIFTKEY, etc.). | |
param (dict): Additional parameters passed to the function. | |
""" | |
if event == cv2.EVENT_LBUTTONDOWN: | |
self.left_mouse_count += 1 | |
if self.left_mouse_count <= 2: | |
for box, track_id in zip(self.boxes, self.trk_ids): | |
if box[0] < x < box[2] and box[1] < y < box[3] and track_id not in self.selected_boxes: | |
self.selected_boxes[track_id] = box | |
elif event == cv2.EVENT_RBUTTONDOWN: | |
self.selected_boxes = {} | |
self.left_mouse_count = 0 | |
def extract_tracks(self, tracks): | |
""" | |
Extracts tracking results from the provided data. | |
Args: | |
tracks (list): List of tracks obtained from the object tracking process. | |
""" | |
self.boxes = tracks[0].boxes.xyxy.cpu() | |
self.clss = tracks[0].boxes.cls.cpu().tolist() | |
self.trk_ids = tracks[0].boxes.id.int().cpu().tolist() | |
def calculate_centroid(box): | |
""" | |
Calculates the centroid of a bounding box. | |
Args: | |
box (list): Bounding box coordinates [x1, y1, x2, y2]. | |
Returns: | |
(tuple): Centroid coordinates (x, y). | |
""" | |
return int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2) | |
def calculate_distance(self, centroid1, centroid2): | |
""" | |
Calculates the distance between two centroids. | |
Args: | |
centroid1 (tuple): Coordinates of the first centroid (x, y). | |
centroid2 (tuple): Coordinates of the second centroid (x, y). | |
Returns: | |
(tuple): Distance in meters and millimeters. | |
""" | |
pixel_distance = math.sqrt((centroid1[0] - centroid2[0]) ** 2 + (centroid1[1] - centroid2[1]) ** 2) | |
distance_m = pixel_distance / self.pixel_per_meter | |
distance_mm = distance_m * 1000 | |
return distance_m, distance_mm | |
def start_process(self, im0, tracks): | |
""" | |
Processes the video frame and calculates the distance between two bounding boxes. | |
Args: | |
im0 (ndarray): The image frame. | |
tracks (list): List of tracks obtained from the object tracking process. | |
Returns: | |
(ndarray): The processed image frame. | |
""" | |
self.im0 = im0 | |
if tracks[0].boxes.id is None: | |
if self.view_img: | |
self.display_frames() | |
return im0 | |
self.extract_tracks(tracks) | |
self.annotator = Annotator(self.im0, line_width=self.line_thickness) | |
for box, cls, track_id in zip(self.boxes, self.clss, self.trk_ids): | |
self.annotator.box_label(box, color=colors(int(cls), True), label=self.names[int(cls)]) | |
if len(self.selected_boxes) == 2: | |
for trk_id in self.selected_boxes.keys(): | |
if trk_id == track_id: | |
self.selected_boxes[track_id] = box | |
if len(self.selected_boxes) == 2: | |
self.centroids = [self.calculate_centroid(self.selected_boxes[trk_id]) for trk_id in self.selected_boxes] | |
distance_m, distance_mm = self.calculate_distance(self.centroids[0], self.centroids[1]) | |
self.annotator.plot_distance_and_line( | |
distance_m, distance_mm, self.centroids, self.line_color, self.centroid_color | |
) | |
self.centroids = [] | |
if self.view_img and self.env_check: | |
self.display_frames() | |
return im0 | |
def display_frames(self): | |
"""Displays the current frame with annotations.""" | |
cv2.namedWindow("Ultralytics Distance Estimation") | |
cv2.setMouseCallback("Ultralytics Distance Estimation", self.mouse_event_for_distance) | |
cv2.imshow("Ultralytics Distance Estimation", self.im0) | |
if cv2.waitKey(1) & 0xFF == ord("q"): | |
return | |
if __name__ == "__main__": | |
names = {0: "person", 1: "car"} # example class names | |
distance_calculation = DistanceCalculation(names) | |