madankn
xindus
2f8d685
import gradio as gr
import re
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from nltk.corpus import stopwords
from spaces import GPU # Required for ZeroGPU Spaces
import nltk
# Download stopwords if not already available
nltk.download("stopwords")
nltk.download('punkt')
stop_words = set(stopwords.words("english"))
# Define additional words (prepositions, conjunctions, articles) to remove
extra_stopwords = set([
'a', 'an', 'the', 'and', 'but', 'or', 'for', 'nor', 'so', 'yet', 'at', 'in', 'on', 'with', 'about', 'as', 'by', 'to', 'from', 'of', 'over', 'under', 'during', 'before', 'after', 'between', 'into', 'through', 'among', 'above', 'below'
])
# Combine NLTK stopwords with extra stopwords
stop_words = set(stopwords.words("english")).union(extra_stopwords)
# Model list
model_choices = {
"Xindus Summarizer" : "madankn/xindus_t5base",
"T5 Base (t5-base)": "t5-base",
"DistilBART CNN (sshleifer/distilbart-cnn-12-6)": "sshleifer/distilbart-cnn-12-6",
"DistilBART XSum (sshleifer/distilbart-xsum-12-6)": "sshleifer/distilbart-xsum-12-6",
"T5 Small (t5-small)": "t5-small",
"Flan-T5 Base (google/flan-t5-base)": "google/flan-t5-base",
"BART Large CNN (facebook/bart-large-cnn)": "facebook/bart-large-cnn",
"PEGASUS XSum (google/pegasus-xsum)": "google/pegasus-xsum",
"BART Large XSum (facebook/bart-large-xsum)": "facebook/bart-large-xsum"
}
model_cache = {}
def emphasize_keywords(text, keywords, repeat=3):
for kw in keywords:
pattern = r'\b' + re.escape(kw) + r'\b'
text = re.sub(pattern, (kw + ' ') * repeat, text, flags=re.IGNORECASE)
return text
# Clean text: remove special characters and stop words
def clean_text(input_text):
cleaned = re.sub(r"[^A-Za-z0-9\s]", " ", input_text)
cleaned = re.sub(r"\b[A-Za-z]{2,}[0-9]{3,}\b", "", cleaned) # SKU/product code pattern (letters followed by numbers)
cleaned = re.sub(r"\b[A-Za-z]{2,}[0-9]{2,}\b", "", cleaned)
cleaned = re.sub(r"\b\d+\b", "", cleaned) # Remove numbers as tokens
# Example keyword list
keywords = ["blazer", "shirt", "trouser", "saree", "tie", "suit"]
cleaned = emphasize_keywords(cleaned, keywords)
words = cleaned.split()
words = [word for word in words if word.lower() not in stop_words]
return " ".join(words).strip()
# Load model and tokenizer
def load_model(model_name):
if model_name not in model_cache:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(
model_name, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)
model.to("cuda" if torch.cuda.is_available() else "cpu")
model_cache[model_name] = (tokenizer, model)
# Warm up
dummy_input = tokenizer("summarize: warmup", return_tensors="pt").input_ids.to(model.device)
model.generate(dummy_input, max_length=10)
return model_cache[model_name]
# Main function triggered by Gradio
@GPU # 👈 Required for ZeroGPU to trigger GPU spin-up
def summarize_text(input_text, model_label, char_limit):
if not input_text.strip():
return "Please enter some text."
input_text = clean_text(input_text)
model_name = model_choices[model_label]
tokenizer, model = load_model(model_name)
# Prefix for T5/FLAN-style models
if "t5" in model_name.lower():
input_text = "summarize: " + input_text
inputs = tokenizer(input_text, return_tensors="pt", truncation=True)
input_ids = inputs["input_ids"].to(model.device)
# Adjust the generation parameters
summary_ids = model.generate(
input_ids,
max_length=30, # Keep output length short, around the original text's length
min_length=15, # Ensure the summary is not too short
do_sample=False, # Disable sampling to avoid introducing new words
num_beams=5, # Beam search to find the most likely sequence of tokens
early_stopping=True, # Stop once a reasonable summary is generated
no_repeat_ngram_size=1 # Prevent repetition of n-grams (bigrams in this case)
)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
# Remove any non-alphanumeric characters except space
summary = re.sub(r"[^A-Za-z0-9\s]", "", summary)
# Strip unwanted trailing spaces and punctuation
summary = summary.strip() # Remove leading and trailing spaces
summary = re.sub(r'[^\w\s]$', '', summary) # Remove trailing punctuation
return summary[:char_limit].strip()
# Gradio UI
iface = gr.Interface(
fn=summarize_text,
inputs=[
gr.Textbox(lines=6, label="Enter text to summarize"),
gr.Dropdown(choices=list(model_choices.keys()), label="Choose summarization model", value="T5 Base (t5-base)"),
gr.Slider(minimum=30, maximum=200, value=65, step=1, label="Max Character Limit")
],
outputs=gr.Textbox(lines=3, label="Summary (truncated to character limit)"),
title="🔥 Xindus Summarizer (GPU-Optimized)",
description="Summarizes input using Hugging Face models with ZeroGPU. Now faster with CUDA, float16, and warm start!"
)
iface.launch()