import gradio as gr import re import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from nltk.corpus import stopwords from spaces import GPU # Required for ZeroGPU Spaces import nltk # Download stopwords if not already available nltk.download("stopwords") nltk.download('punkt') stop_words = set(stopwords.words("english")) # Define additional words (prepositions, conjunctions, articles) to remove extra_stopwords = set([ 'a', 'an', 'the', 'and', 'but', 'or', 'for', 'nor', 'so', 'yet', 'at', 'in', 'on', 'with', 'about', 'as', 'by', 'to', 'from', 'of', 'over', 'under', 'during', 'before', 'after', 'between', 'into', 'through', 'among', 'above', 'below' ]) # Combine NLTK stopwords with extra stopwords stop_words = set(stopwords.words("english")).union(extra_stopwords) # Model list model_choices = { "Xindus Summarizer" : "madankn/xindus_t5base", "T5 Base (t5-base)": "t5-base", "DistilBART CNN (sshleifer/distilbart-cnn-12-6)": "sshleifer/distilbart-cnn-12-6", "DistilBART XSum (sshleifer/distilbart-xsum-12-6)": "sshleifer/distilbart-xsum-12-6", "T5 Small (t5-small)": "t5-small", "Flan-T5 Base (google/flan-t5-base)": "google/flan-t5-base", "BART Large CNN (facebook/bart-large-cnn)": "facebook/bart-large-cnn", "PEGASUS XSum (google/pegasus-xsum)": "google/pegasus-xsum", "BART Large XSum (facebook/bart-large-xsum)": "facebook/bart-large-xsum" } model_cache = {} def emphasize_keywords(text, keywords, repeat=3): for kw in keywords: pattern = r'\b' + re.escape(kw) + r'\b' text = re.sub(pattern, (kw + ' ') * repeat, text, flags=re.IGNORECASE) return text # Clean text: remove special characters and stop words def clean_text(input_text): cleaned = re.sub(r"[^A-Za-z0-9\s]", " ", input_text) cleaned = re.sub(r"\b[A-Za-z]{2,}[0-9]{3,}\b", "", cleaned) # SKU/product code pattern (letters followed by numbers) cleaned = re.sub(r"\b[A-Za-z]{2,}[0-9]{2,}\b", "", cleaned) cleaned = re.sub(r"\b\d+\b", "", cleaned) # Remove numbers as tokens # Example keyword list keywords = ["blazer", "shirt", "trouser", "saree", "tie", "suit"] cleaned = emphasize_keywords(cleaned, keywords) words = cleaned.split() words = [word for word in words if word.lower() not in stop_words] return " ".join(words).strip() # Load model and tokenizer def load_model(model_name): if model_name not in model_cache: tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained( model_name, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 ) model.to("cuda" if torch.cuda.is_available() else "cpu") model_cache[model_name] = (tokenizer, model) # Warm up dummy_input = tokenizer("summarize: warmup", return_tensors="pt").input_ids.to(model.device) model.generate(dummy_input, max_length=10) return model_cache[model_name] # Main function triggered by Gradio @GPU # 👈 Required for ZeroGPU to trigger GPU spin-up def summarize_text(input_text, model_label, char_limit): if not input_text.strip(): return "Please enter some text." input_text = clean_text(input_text) model_name = model_choices[model_label] tokenizer, model = load_model(model_name) # Prefix for T5/FLAN-style models if "t5" in model_name.lower(): input_text = "summarize: " + input_text inputs = tokenizer(input_text, return_tensors="pt", truncation=True) input_ids = inputs["input_ids"].to(model.device) # Adjust the generation parameters summary_ids = model.generate( input_ids, max_length=30, # Keep output length short, around the original text's length min_length=15, # Ensure the summary is not too short do_sample=False, # Disable sampling to avoid introducing new words num_beams=5, # Beam search to find the most likely sequence of tokens early_stopping=True, # Stop once a reasonable summary is generated no_repeat_ngram_size=1 # Prevent repetition of n-grams (bigrams in this case) ) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) # Remove any non-alphanumeric characters except space summary = re.sub(r"[^A-Za-z0-9\s]", "", summary) # Strip unwanted trailing spaces and punctuation summary = summary.strip() # Remove leading and trailing spaces summary = re.sub(r'[^\w\s]$', '', summary) # Remove trailing punctuation return summary[:char_limit].strip() # Gradio UI iface = gr.Interface( fn=summarize_text, inputs=[ gr.Textbox(lines=6, label="Enter text to summarize"), gr.Dropdown(choices=list(model_choices.keys()), label="Choose summarization model", value="T5 Base (t5-base)"), gr.Slider(minimum=30, maximum=200, value=65, step=1, label="Max Character Limit") ], outputs=gr.Textbox(lines=3, label="Summary (truncated to character limit)"), title="🔥 Xindus Summarizer (GPU-Optimized)", description="Summarizes input using Hugging Face models with ZeroGPU. Now faster with CUDA, float16, and warm start!" ) iface.launch()