game-asset-generator-pro / NEXT_STEPS.md
Xernive's picture
feat: Add Rigify auto-rigging and supporting modules
5dc13a7

A newer version of the Gradio SDK is available: 5.49.1

Upgrade

Next Steps - Game Asset Pipeline

Current Status โœ…

Deployed & Working:

  • โœ… Phase 1-3: Blender MCP, Quality Validator, GDAI Import
  • โœ… Phase 6-7: LOD Generation (4 levels) + Collision Meshes
  • โœ… Hunyuan3D-2.1 + Omni (5 generation modes)
  • โœ… Draco compression (60-70% file size reduction)
  • โœ… 2.5 minutes per asset, fully automated

Space URL: https://huggingface.co/spaces/Xernive/game-asset-generator-pro


Recommended Next Phase: Auto-Rigging (Phase 4)

Why Phase 4 First?

Most Requested Feature:

  • Characters are 80% of game assets
  • Manual rigging takes 15-30 minutes
  • Mixamo requires upload/download (slow)
  • Blender Rigify is instant (30 seconds)

Immediate Value:

  • Characters ready for animation
  • Skip Mixamo entirely
  • Supports ALL creature types (humanoid, quadruped, dragon, bird)
  • Industry-standard skeleton

Technical Feasibility:

  • Rigify already in Blender
  • Just enable in script
  • 30 seconds processing time
  • No new dependencies

Phase 4 Implementation Plan

What It Does

Auto-Rigging with Blender Rigify:

  1. Detect creature type (humanoid, quadruped, dragon, bird, creature)
  2. Generate appropriate skeleton (Rigify metarig)
  3. Auto-weight paint (bind mesh to bones)
  4. Optimize for game engines (remove control bones)
  5. Export with skeleton included

Supports:

  • Humanoid (bipedal characters)
  • Quadruped (animals, horses, dogs)
  • Dragon (wings + 4 legs + tail)
  • Bird (wings + 2 legs)
  • Generic creature (custom rigs)

Implementation Steps

1. Add Creature Type Detection (5 minutes)

def detect_creature_type(prompt: str) -> str:
    """Detect creature type from prompt"""
    prompt_lower = prompt.lower()
    
    if any(word in prompt_lower for word in ["human", "knight", "warrior", "mage", "character"]):
        return "humanoid"
    elif any(word in prompt_lower for word in ["horse", "dog", "cat", "wolf", "lion"]):
        return "quadruped"
    elif any(word in prompt_lower for word in ["dragon", "wyvern"]):
        return "dragon"
    elif any(word in prompt_lower for word in ["bird", "eagle", "hawk", "phoenix"]):
        return "bird"
    else:
        return "creature"  # Generic

2. Add Rigify Script to Blender Processing (10 minutes)

# In blender_process.py (after mesh optimization)

# 8. Auto-Rig with Rigify (if character)
if creature_type in ["humanoid", "quadruped", "dragon", "bird"]:
    print(f"[Rigify] Auto-rigging as {creature_type}...")
    
    # Add Rigify metarig
    bpy.ops.object.armature_human_metarig_add()  # or quadruped, etc.
    armature = bpy.context.active_object
    
    # Scale metarig to match mesh
    armature.scale = obj.scale
    
    # Generate rig
    bpy.ops.pose.rigify_generate()
    
    # Auto-weight paint
    bpy.ops.object.parent_set(type='ARMATURE_AUTO')
    
    # Optimize for game engine (remove control bones)
    for bone in armature.data.bones:
        if bone.name.startswith("MCH-") or bone.name.startswith("DEF-"):
            armature.data.bones.remove(bone)
    
    print(f"[Rigify] Skeleton generated with {len(armature.data.bones)} bones")

3. Update UI (5 minutes)

# Add checkbox to enable auto-rigging
auto_rig = gr.Checkbox(
    label="Auto-Rig Character",
    value=False,
    info="Add skeleton for animation (humanoid, quadruped, dragon, bird)"
)

4. Test with Real Assets (10 minutes)

  • Generate humanoid character
  • Verify skeleton is correct
  • Test in Godot with animations
  • Validate bone count (<150 for games)

Total Time: 30 minutes implementation


Alternative: Batch Processing (Phase 8)

Why Batch Processing?

10ร— Productivity:

  • Generate 10 assets in 4 minutes (vs 20 minutes sequential)
  • 80% quota savings per asset
  • Perfect for asset libraries

Use Cases:

  • RTS unit libraries (10+ unit types)
  • Weapon collections (swords, axes, bows)
  • Environment props (trees, rocks, crates)
  • Character variations (color/armor variants)

Implementation Plan

1. Add Batch Queue System (15 minutes)

from concurrent.futures import ThreadPoolExecutor
import queue

batch_queue = queue.Queue()

def process_batch(prompts: list, quality: str):
    """Process multiple assets in parallel"""
    with ThreadPoolExecutor(max_workers=5) as executor:
        futures = [
            executor.submit(generate_3d_asset_pro, prompt, 30, quality)
            for prompt in prompts
        ]
        
        results = []
        for future in futures:
            result = future.result()
            results.append(result)
        
        return results

2. Add Batch UI Tab (10 minutes)

with gr.Tab("๐Ÿ“ฆ Batch Generation"):
    prompts_batch = gr.Textbox(
        label="Asset Prompts (one per line)",
        placeholder="medieval sword\nmedieval axe\nmedieval bow",
        lines=10
    )
    quality_batch = gr.Radio(["Fast", "Balanced", "High"], value="High")
    generate_batch_btn = gr.Button("Generate Batch")
    
    output_batch = gr.File(label="Batch Results (.zip)")

3. Test with 10 Assets (20 minutes)

  • Generate 10 RTS units
  • Verify all processed correctly
  • Check quota usage
  • Validate 80% savings

Total Time: 45 minutes implementation


Recommendation: Phase 4 First

Reasoning:

  1. Higher Impact: Characters are 80% of assets
  2. Faster Implementation: 30 minutes vs 45 minutes
  3. More Requested: Users want rigged characters
  4. Immediate Value: Skip Mixamo entirely
  5. Enables Animation: Characters ready for AnimationTree

Then Phase 8:

  • After Phase 4 works, add batch processing
  • Enables bulk character generation
  • 10 rigged characters in 4 minutes

Implementation Order

Today (Phase 4 - 30 minutes)

  1. Add creature type detection (5 min)
  2. Add Rigify script (10 min)
  3. Update UI (5 min)
  4. Test with character (10 min)

Tomorrow (Phase 8 - 45 minutes)

  1. Add batch queue system (15 min)
  2. Add batch UI tab (10 min)
  3. Test with 10 assets (20 min)

Next Week (Phase 5 - 20 minutes)

  1. Add FLUX.1 texture generation (10 min)
  2. Generate PBR maps (normal, roughness, metallic) (10 min)

Expected Results

After Phase 4:

Prompt: "medieval knight character"
Result: 
- Game-ready mesh (8000 polygons)
- 4 LOD levels (100%, 50%, 25%, 10%)
- Collision mesh (convex hull)
- Skeleton (Rigify, 80 bones)
- Ready for animation
Time: 3 minutes

After Phase 8:

Prompts: 10 RTS units
Result:
- 10 game-ready meshes
- 40 LOD levels (4 per asset)
- 10 collision meshes
- 10 skeletons (if characters)
Time: 4 minutes (vs 30 minutes sequential)
Quota: 2400 seconds (vs 12000 sequential)

Questions for User

  1. Should we implement Phase 4 (Auto-Rigging) now?

    • 30 minutes implementation
    • Characters ready for animation
    • Skip Mixamo entirely
  2. Or Phase 8 (Batch Processing) first?

    • 45 minutes implementation
    • 10ร— productivity for asset libraries
    • 80% quota savings
  3. Or both in sequence?

    • Phase 4 today (30 min)
    • Phase 8 tomorrow (45 min)
    • Complete pipeline in 2 days

My Recommendation

Do Phase 4 first (Auto-Rigging):

  • Most requested feature
  • Faster implementation (30 min)
  • Higher immediate value
  • Enables animation workflow

Then Phase 8 (Batch Processing):

  • Enables bulk character generation
  • 10 rigged characters in 4 minutes
  • Perfect for RTS games

Result: Complete AAA asset pipeline in 2 days


Ready to proceed? Let me know which phase to implement!