sponsorblock-ml / app.py
Joshua Lochner
Hide previous output on run
e926596
raw
history blame
9.43 kB
from functools import partial
from math import ceil, floor
import streamlit.components.v1 as components
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
)
import streamlit as st
import sys
import os
import json
from urllib.parse import quote
from huggingface_hub import hf_hub_download
# Allow direct execution
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), 'src')) # noqa
from predict import SegmentationArguments, ClassifierArguments, predict as pred, seconds_to_time # noqa
from evaluate import EvaluationArguments
from shared import device, CATGEGORY_OPTIONS
from utils import regex_search
st.set_page_config(
page_title='SponsorBlock ML',
page_icon='🤖',
# layout='wide',
# initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://github.com/xenova/sponsorblock-ml',
'Report a bug': 'https://github.com/xenova/sponsorblock-ml/issues/new/choose',
# 'About': "# This is a header. This is an *extremely* cool app!"
}
)
YT_VIDEO_REGEX = r'''(?x)^
(?:
# http(s):// or protocol-independent URL
(?:https?://|//)
(?:(?:(?:(?:\w+\.)?[yY][oO][uU][tT][uU][bB][eE](?:-nocookie|kids)?\.com/|
youtube\.googleapis\.com/) # the various hostnames, with wildcard subdomains
(?:.*?\#/)? # handle anchor (#/) redirect urls
(?: # the various things that can precede the ID:
# v/ or embed/ or e/
(?:(?:v|embed|e)/(?!videoseries))
|(?: # or the v= param in all its forms
# preceding watch(_popup|.php) or nothing (like /?v=xxxx)
(?:(?:watch|movie)(?:_popup)?(?:\.php)?/?)?
(?:\?|\#!?) # the params delimiter ? or # or #!
# any other preceding param (like /?s=tuff&v=xxxx or ?s=tuff&v=V36LpHqtcDY)
(?:.*?[&;])??
v=
)
))
|(?:
youtu\.be # just youtu.be/xxxx
)/)
)? # all until now is optional -> you can pass the naked ID
# here is it! the YouTube video ID
(?P<id>[0-9A-Za-z_-]{11})'''
# https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints
# https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#experimental-t5-pre-trained-model-checkpoints
# https://huggingface.co/docs/transformers/model_doc/t5
# https://huggingface.co/docs/transformers/model_doc/t5v1.1
# Faster caching system for predictions (No need to hash)
@st.cache(persist=True, allow_output_mutation=True)
def create_prediction_cache():
return {}
@st.cache(persist=True, allow_output_mutation=True)
def create_function_cache():
return {}
prediction_cache = create_prediction_cache()
prediction_function_cache = create_function_cache()
MODELS = {
'Small (293 MB)': {
'pretrained': 'google/t5-v1_1-small',
'repo_id': 'Xenova/sponsorblock-small',
'num_parameters': '77M'
},
'Base v1 (850 MB)': {
'pretrained': 't5-base',
'repo_id': 'Xenova/sponsorblock-base-v1',
'num_parameters': '220M'
},
'Base v1.1 (944 MB)': {
'pretrained': 'google/t5-v1_1-base',
'repo_id': 'Xenova/sponsorblock-base-v1.1',
'num_parameters': '250M'
}
}
# Create per-model cache
for m in MODELS:
if m not in prediction_cache:
prediction_cache[m] = {}
CLASSIFIER_PATH = 'Xenova/sponsorblock-classifier'
@st.cache(persist=True, allow_output_mutation=True)
def download_classifier(classifier_args):
# Save classifier and vectorizer
hf_hub_download(repo_id=CLASSIFIER_PATH,
filename=classifier_args.classifier_file,
cache_dir=classifier_args.classifier_dir,
force_filename=classifier_args.classifier_file,
)
hf_hub_download(repo_id=CLASSIFIER_PATH,
filename=classifier_args.vectorizer_file,
cache_dir=classifier_args.classifier_dir,
force_filename=classifier_args.vectorizer_file,
)
return True
def predict_function(model_id, model, tokenizer, segmentation_args, classifier_args, video_id):
if video_id not in prediction_cache[model_id]:
prediction_cache[model_id][video_id] = pred(
video_id, model, tokenizer,
segmentation_args=segmentation_args,
classifier_args=classifier_args
)
return prediction_cache[model_id][video_id]
def load_predict(model_id):
model_info = MODELS[model_id]
if model_id not in prediction_function_cache:
# Use default segmentation and classification arguments
evaluation_args = EvaluationArguments(model_path=model_info['repo_id'])
segmentation_args = SegmentationArguments()
classifier_args = ClassifierArguments()
model = AutoModelForSeq2SeqLM.from_pretrained(
evaluation_args.model_path)
model.to(device())
tokenizer = AutoTokenizer.from_pretrained(evaluation_args.model_path)
download_classifier(classifier_args)
prediction_function_cache[model_id] = partial(
predict_function, model_id, model, tokenizer, segmentation_args, classifier_args)
return prediction_function_cache[model_id]
def main():
top = st.container()
output = st.empty()
# Display heading and subheading
top.markdown('# SponsorBlock ML')
top.markdown('##### Automatically detect in-video YouTube sponsorships, self/unpaid promotions, and interaction reminders.')
# Add controls
model_id = top.selectbox(
'Select model', MODELS.keys(), index=0, on_change=output.empty)
video_input = top.text_input(
'Video URL/ID:', on_change=output.empty)
categories = top.multiselect('Categories:',
CATGEGORY_OPTIONS.keys(),
CATGEGORY_OPTIONS.keys(),
format_func=CATGEGORY_OPTIONS.get, on_change=output.empty
)
# Hide segments with a confidence lower than
confidence_threshold = top.slider(
'Confidence Threshold (%):', min_value=0, max_value=100, on_change=output.empty)
if len(video_input) == 0: # No input, do not continue
return
# Load prediction function
with st.spinner('Loading model...'):
predict = load_predict(model_id)
with output.container(): # Place all content in output container
video_id = regex_search(video_input, YT_VIDEO_REGEX)
if video_id is None:
st.exception(ValueError('Invalid YouTube URL/ID'))
return
with st.spinner('Running model...'):
predictions = predict(video_id)
if len(predictions) == 0:
st.success('No segments found!')
return
submit_segments = []
for index, prediction in enumerate(predictions, start=1):
if prediction['category'] not in categories:
continue # Skip
confidence = prediction['probability'] * 100
if confidence < confidence_threshold:
continue
submit_segments.append({
'segment': [prediction['start'], prediction['end']],
'category': prediction['category'].lower(),
'actionType': 'skip'
})
start_time = seconds_to_time(prediction['start'])
end_time = seconds_to_time(prediction['end'])
with st.expander(
f"[{prediction['category']}] Prediction #{index} ({start_time} \u2192 {end_time})"
):
url = f"https://www.youtube-nocookie.com/embed/{video_id}?&start={floor(prediction['start'])}&end={ceil(prediction['end'])}"
# autoplay=1controls=0&&modestbranding=1&fs=0
# , width=None, height=None, scrolling=False
components.iframe(url, width=670, height=376)
text = ' '.join(w['text'] for w in prediction['words'])
st.write(f"**Times:** {start_time} \u2192 {end_time}")
st.write(
f"**Category:** {CATGEGORY_OPTIONS[prediction['category']]}")
st.write(f"**Confidence:** {confidence:.2f}%")
st.write(f'**Text:** "{text}"')
json_data = quote(json.dumps(submit_segments))
link = f'[Submit Segments](https://www.youtube.com/watch?v={video_id}#segments={json_data})'
st.markdown(link, unsafe_allow_html=True)
wiki_link = '[Review generated segments before submitting!](https://wiki.sponsor.ajay.app/w/Automating_Submissions)'
st.markdown(wiki_link, unsafe_allow_html=True)
if __name__ == '__main__':
main()