sponsorblock-ml / app.py
IThinkIAmCool
added native support for v query parameter.
96dad7a unverified
raw
history blame
11.4 kB
from functools import partial
from math import ceil, floor
import streamlit.components.v1 as components
import streamlit as st
import sys
import os
import json
from urllib.parse import quote
# Allow direct execution
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), 'src')) # noqa
from preprocess import get_words
from predict import PredictArguments, SegmentationArguments, predict as pred
from shared import GeneralArguments, seconds_to_time, CATGEGORY_OPTIONS
from utils import regex_search
from model import get_model_tokenizer_classifier
from errors import TranscriptError
st.set_page_config(
page_title='SponsorBlock ML',
page_icon='🤖',
# layout='wide',
# initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://github.com/xenova/sponsorblock-ml',
'Report a bug': 'https://github.com/xenova/sponsorblock-ml/issues/new/choose',
# 'About': "# This is a header. This is an *extremely* cool app!"
}
)
YT_VIDEO_REGEX = r'''(?x)^
(?:
# http(s):// or protocol-independent URL
(?:https?://|//)
(?:(?:(?:(?:\w+\.)?[yY][oO][uU][tT][uU][bB][eE](?:-nocookie|kids)?\.com/|
youtube\.googleapis\.com/) # the various hostnames, with wildcard subdomains
(?:.*?\#/)? # handle anchor (#/) redirect urls
(?: # the various things that can precede the ID:
# v/ or embed/ or e/
(?:(?:v|embed|e)/(?!videoseries))
|(?: # or the v= param in all its forms
# preceding watch(_popup|.php) or nothing (like /?v=xxxx)
(?:(?:watch|movie)(?:_popup)?(?:\.php)?/?)?
(?:\?|\#!?) # the params delimiter ? or # or #!
# any other preceding param (like /?s=tuff&v=xxxx or ?s=tuff&v=V36LpHqtcDY)
(?:.*?[&;])??
v=
)
))
|(?:
youtu\.be # just youtu.be/xxxx
)/)
)? # all until now is optional -> you can pass the naked ID
# here is it! the YouTube video ID
(?P<id>[0-9A-Za-z_-]{11})'''
# https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints
# https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#experimental-t5-pre-trained-model-checkpoints
# https://huggingface.co/docs/transformers/model_doc/t5
# https://huggingface.co/docs/transformers/model_doc/t5v1.1
# Faster caching system for predictions (No need to hash)
@st.cache(persist=True, allow_output_mutation=True)
def create_prediction_cache():
return {}
@st.cache(persist=True, allow_output_mutation=True)
def create_function_cache():
return {}
prediction_cache = create_prediction_cache()
prediction_function_cache = create_function_cache()
MODELS = {
'Small (293 MB)': {
'pretrained': 'google/t5-v1_1-small',
'repo_id': 'Xenova/sponsorblock-small',
'num_parameters': '77M'
},
'Base v1 (850 MB)': {
'pretrained': 't5-base',
'repo_id': 'Xenova/sponsorblock-base-v1',
'num_parameters': '220M'
},
'Base v1.1 (944 MB)': {
'pretrained': 'google/t5-v1_1-base',
'repo_id': 'Xenova/sponsorblock-base-v1.1',
'num_parameters': '250M'
}
}
# Create per-model cache
for m in MODELS:
if m not in prediction_cache:
prediction_cache[m] = {}
CLASSIFIER_PATH = 'Xenova/sponsorblock-classifier-v2'
TRANSCRIPT_TYPES = {
'AUTO_MANUAL': {
'label': 'Auto-generated (fallback to manual)',
'type': 'auto',
'fallback': 'manual'
},
'MANUAL_AUTO': {
'label': 'Manual (fallback to auto-generated)',
'type': 'manual',
'fallback': 'auto'
},
# 'TRANSLATED': 'Translated to English' # Coming soon
}
def predict_function(model_id, model, tokenizer, segmentation_args, classifier, video_id, words, ts_type_id):
cache_id = f'{video_id}_{ts_type_id}'
if cache_id not in prediction_cache[model_id]:
prediction_cache[model_id][cache_id] = pred(
video_id, model, tokenizer,
segmentation_args=segmentation_args,
words=words,
classifier=classifier
)
return prediction_cache[model_id][cache_id]
def load_predict(model_id):
model_info = MODELS[model_id]
if model_id not in prediction_function_cache:
# Use default segmentation and classification arguments
predict_args = PredictArguments(model_name_or_path=model_info['repo_id'])
general_args = GeneralArguments()
segmentation_args = SegmentationArguments()
model, tokenizer, classifier = get_model_tokenizer_classifier(predict_args, general_args)
prediction_function_cache[model_id] = partial(
predict_function, model_id, model, tokenizer, segmentation_args, classifier)
return prediction_function_cache[model_id]
def create_button(text, url):
return f"""<div class="row-widget stButton" style="text-align: center">
<a href="{url}" target="_blank" rel="noopener noreferrer" class="btn-link">
<button kind="primary" class="btn">{text}</button>
</a>
</div>"""
def main():
st.markdown("""<style>
.btn {
display: inline-flex;
-webkit-box-align: center;
align-items: center;
-webkit-box-pack: center;
justify-content: center;
font-weight: 600;
padding: 0.25rem 0.75rem;
border-radius: 0.25rem;
margin: 0px;
line-height: 1.5;
color: inherit;
width: auto;
user-select: none;
background-color: inherit;
border: 1px solid rgba(49, 51, 63, 0.2);
}
.btn-link {
color: inherit;
text-decoration: none;
}
</style>""", unsafe_allow_html=True)
top = st.container()
output = st.empty()
# Display heading and subheading
top.markdown('# SponsorBlock ML')
top.markdown(
'##### Automatically detect in-video YouTube sponsorships, self/unpaid promotions, and interaction reminders.')
# Add controls
col1, col2 = top.columns(2)
with col1:
model_id = st.selectbox(
'Select model', MODELS.keys(), index=0, on_change=output.empty)
with col2:
ts_type_id = st.selectbox(
'Transcript type', TRANSCRIPT_TYPES.keys(), index=0, format_func=lambda x: TRANSCRIPT_TYPES[x]['label'], on_change=output.empty)
query_params = st.experimental_get_query_params()
video_id = None
if 'v' in query_params:
video_id = query_params['v'][0]
if video_id is None:
video_input = top.text_input('Video URL/ID:', on_change=output.empty)
else :
video_input = top.text_input('Video URL/ID:', on_change=output.empty,value = video_id)
categories = top.multiselect('Categories:',
CATGEGORY_OPTIONS.keys(),
CATGEGORY_OPTIONS.keys(),
format_func=CATGEGORY_OPTIONS.get, on_change=output.empty
)
# Hide segments with a confidence lower than
confidence_threshold = top.slider(
'Confidence Threshold (%):', min_value=0, value=50, max_value=100, on_change=output.empty)
if len(video_input) == 0: # No input, do not continue
return
# Load prediction function
with st.spinner('Loading model...'):
predict = load_predict(model_id)
with output.container(): # Place all content in output container
video_id = regex_search(video_input, YT_VIDEO_REGEX)
if video_id is None:
st.exception(ValueError('Invalid YouTube URL/ID'))
return
try:
with st.spinner('Downloading transcript...'):
words = get_words(video_id,
transcript_type=TRANSCRIPT_TYPES[ts_type_id]['type'],
fallback=TRANSCRIPT_TYPES[ts_type_id]['fallback']
)
except TranscriptError:
pass
if not words:
st.error('No transcript found!')
return
with st.spinner('Running model...'):
predictions = predict(video_id, words, ts_type_id)
if len(predictions) == 0:
st.success('No segments found!')
return
submit_segments = []
for index, prediction in enumerate(predictions, start=1):
category_key = prediction['category'].upper()
if category_key not in categories:
continue # Skip
confidence = prediction['probability'] * 100
if confidence < confidence_threshold:
continue
submit_segments.append({
'segment': [prediction['start'], prediction['end']],
'category': prediction['category'],
'actionType': 'skip'
})
start_time = seconds_to_time(prediction['start'])
end_time = seconds_to_time(prediction['end'])
with st.expander(
f"[{category_key}] Prediction #{index} ({start_time} \u2192 {end_time})"
):
url = f"https://www.youtube-nocookie.com/embed/{video_id}?&start={floor(prediction['start'])}&end={ceil(prediction['end'])}"
# autoplay=1controls=0&&modestbranding=1&fs=0
# , width=None, height=None, scrolling=False
components.iframe(url, width=670, height=376)
text = ' '.join(w['text'] for w in prediction['words'])
st.write(f"**Times:** {start_time} \u2192 {end_time}")
st.write(
f"**Category:** {CATGEGORY_OPTIONS[category_key]}")
st.write(f"**Confidence:** {confidence:.2f}%")
st.write(f'**Text:** "{text}"')
if not submit_segments:
st.success(
f'No segments found! ({len(predictions)} ignored due to filters/settings)')
return
num_hidden = len(predictions) - len(submit_segments)
if num_hidden > 0:
st.info(
f'{num_hidden} predictions hidden (adjust the settings and filters to view them all).')
json_data = quote(json.dumps(submit_segments))
link = f'https://www.youtube.com/watch?v={video_id}#segments={json_data}'
st.markdown(create_button('Submit Segments', link),
unsafe_allow_html=True)
st.markdown(f"""<div style="text-align: center;font-size: 16px;margin-top: 6px">
<a href="https://wiki.sponsor.ajay.app/w/Automating_Submissions" target="_blank" rel="noopener noreferrer">(Review before submitting!)</a>
</div>""", unsafe_allow_html=True)
if __name__ == '__main__':
main()