Spaces:
Runtime error
Runtime error
from functools import partial | |
from math import ceil, floor | |
import streamlit.components.v1 as components | |
import streamlit as st | |
import sys | |
import os | |
import json | |
from urllib.parse import quote | |
# Allow direct execution | |
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), 'src')) # noqa | |
from preprocess import get_words | |
from predict import PredictArguments, SegmentationArguments, predict as pred | |
from shared import GeneralArguments, seconds_to_time, CATGEGORY_OPTIONS | |
from utils import regex_search | |
from model import get_model_tokenizer_classifier | |
from errors import TranscriptError | |
st.set_page_config( | |
page_title='SponsorBlock ML', | |
page_icon='🤖', | |
# layout='wide', | |
# initial_sidebar_state="expanded", | |
menu_items={ | |
'Get Help': 'https://github.com/xenova/sponsorblock-ml', | |
'Report a bug': 'https://github.com/xenova/sponsorblock-ml/issues/new/choose', | |
# 'About': "# This is a header. This is an *extremely* cool app!" | |
} | |
) | |
YT_VIDEO_REGEX = r'''(?x)^ | |
(?: | |
# http(s):// or protocol-independent URL | |
(?:https?://|//) | |
(?:(?:(?:(?:\w+\.)?[yY][oO][uU][tT][uU][bB][eE](?:-nocookie|kids)?\.com/| | |
youtube\.googleapis\.com/) # the various hostnames, with wildcard subdomains | |
(?:.*?\#/)? # handle anchor (#/) redirect urls | |
(?: # the various things that can precede the ID: | |
# v/ or embed/ or e/ | |
(?:(?:v|embed|e)/(?!videoseries)) | |
|(?: # or the v= param in all its forms | |
# preceding watch(_popup|.php) or nothing (like /?v=xxxx) | |
(?:(?:watch|movie)(?:_popup)?(?:\.php)?/?)? | |
(?:\?|\#!?) # the params delimiter ? or # or #! | |
# any other preceding param (like /?s=tuff&v=xxxx or ?s=tuff&v=V36LpHqtcDY) | |
(?:.*?[&;])?? | |
v= | |
) | |
)) | |
|(?: | |
youtu\.be # just youtu.be/xxxx | |
)/) | |
)? # all until now is optional -> you can pass the naked ID | |
# here is it! the YouTube video ID | |
(?P<id>[0-9A-Za-z_-]{11})''' | |
# https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints | |
# https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#experimental-t5-pre-trained-model-checkpoints | |
# https://huggingface.co/docs/transformers/model_doc/t5 | |
# https://huggingface.co/docs/transformers/model_doc/t5v1.1 | |
# Faster caching system for predictions (No need to hash) | |
def create_prediction_cache(): | |
return {} | |
def create_function_cache(): | |
return {} | |
prediction_cache = create_prediction_cache() | |
prediction_function_cache = create_function_cache() | |
MODELS = { | |
'Small (293 MB)': { | |
'pretrained': 'google/t5-v1_1-small', | |
'repo_id': 'Xenova/sponsorblock-small', | |
'num_parameters': '77M' | |
}, | |
'Base v1 (850 MB)': { | |
'pretrained': 't5-base', | |
'repo_id': 'Xenova/sponsorblock-base-v1', | |
'num_parameters': '220M' | |
}, | |
'Base v1.1 (944 MB)': { | |
'pretrained': 'google/t5-v1_1-base', | |
'repo_id': 'Xenova/sponsorblock-base-v1.1', | |
'num_parameters': '250M' | |
} | |
} | |
# Create per-model cache | |
for m in MODELS: | |
if m not in prediction_cache: | |
prediction_cache[m] = {} | |
CLASSIFIER_PATH = 'Xenova/sponsorblock-classifier-v2' | |
TRANSCRIPT_TYPES = { | |
'AUTO_MANUAL': { | |
'label': 'Auto-generated (fallback to manual)', | |
'type': 'auto', | |
'fallback': 'manual' | |
}, | |
'MANUAL_AUTO': { | |
'label': 'Manual (fallback to auto-generated)', | |
'type': 'manual', | |
'fallback': 'auto' | |
}, | |
# 'TRANSLATED': 'Translated to English' # Coming soon | |
} | |
def predict_function(model_id, model, tokenizer, segmentation_args, classifier, video_id, words, ts_type_id): | |
cache_id = f'{video_id}_{ts_type_id}' | |
if cache_id not in prediction_cache[model_id]: | |
prediction_cache[model_id][cache_id] = pred( | |
video_id, model, tokenizer, | |
segmentation_args=segmentation_args, | |
words=words, | |
classifier=classifier | |
) | |
return prediction_cache[model_id][cache_id] | |
def load_predict(model_id): | |
model_info = MODELS[model_id] | |
if model_id not in prediction_function_cache: | |
# Use default segmentation and classification arguments | |
predict_args = PredictArguments(model_name_or_path=model_info['repo_id']) | |
general_args = GeneralArguments() | |
segmentation_args = SegmentationArguments() | |
model, tokenizer, classifier = get_model_tokenizer_classifier(predict_args, general_args) | |
prediction_function_cache[model_id] = partial( | |
predict_function, model_id, model, tokenizer, segmentation_args, classifier) | |
return prediction_function_cache[model_id] | |
def create_button(text, url): | |
return f"""<div class="row-widget stButton" style="text-align: center"> | |
<a href="{url}" target="_blank" rel="noopener noreferrer" class="btn-link"> | |
<button kind="primary" class="btn">{text}</button> | |
</a> | |
</div>""" | |
def main(): | |
st.markdown("""<style> | |
.btn { | |
display: inline-flex; | |
-webkit-box-align: center; | |
align-items: center; | |
-webkit-box-pack: center; | |
justify-content: center; | |
font-weight: 600; | |
padding: 0.25rem 0.75rem; | |
border-radius: 0.25rem; | |
margin: 0px; | |
line-height: 1.5; | |
color: inherit; | |
width: auto; | |
user-select: none; | |
background-color: inherit; | |
border: 1px solid rgba(49, 51, 63, 0.2); | |
} | |
.btn-link { | |
color: inherit; | |
text-decoration: none; | |
} | |
</style>""", unsafe_allow_html=True) | |
top = st.container() | |
output = st.empty() | |
# Display heading and subheading | |
top.markdown('# SponsorBlock ML') | |
top.markdown( | |
'##### Automatically detect in-video YouTube sponsorships, self/unpaid promotions, and interaction reminders.') | |
# Add controls | |
col1, col2 = top.columns(2) | |
with col1: | |
model_id = st.selectbox( | |
'Select model', MODELS.keys(), index=0, on_change=output.empty) | |
with col2: | |
ts_type_id = st.selectbox( | |
'Transcript type', TRANSCRIPT_TYPES.keys(), index=0, format_func=lambda x: TRANSCRIPT_TYPES[x]['label'], on_change=output.empty) | |
query_params = st.experimental_get_query_params() | |
video_id = None | |
if 'v' in query_params: | |
video_id = query_params['v'][0] | |
if video_id is None: | |
video_input = top.text_input('Video URL/ID:', on_change=output.empty) | |
else : | |
video_input = top.text_input('Video URL/ID:', on_change=output.empty,value = video_id) | |
categories = top.multiselect('Categories:', | |
CATGEGORY_OPTIONS.keys(), | |
CATGEGORY_OPTIONS.keys(), | |
format_func=CATGEGORY_OPTIONS.get, on_change=output.empty | |
) | |
# Hide segments with a confidence lower than | |
confidence_threshold = top.slider( | |
'Confidence Threshold (%):', min_value=0, value=50, max_value=100, on_change=output.empty) | |
if len(video_input) == 0: # No input, do not continue | |
return | |
# Load prediction function | |
with st.spinner('Loading model...'): | |
predict = load_predict(model_id) | |
with output.container(): # Place all content in output container | |
video_id = regex_search(video_input, YT_VIDEO_REGEX) | |
if video_id is None: | |
st.exception(ValueError('Invalid YouTube URL/ID')) | |
return | |
try: | |
with st.spinner('Downloading transcript...'): | |
words = get_words(video_id, | |
transcript_type=TRANSCRIPT_TYPES[ts_type_id]['type'], | |
fallback=TRANSCRIPT_TYPES[ts_type_id]['fallback'] | |
) | |
except TranscriptError: | |
pass | |
if not words: | |
st.error('No transcript found!') | |
return | |
with st.spinner('Running model...'): | |
predictions = predict(video_id, words, ts_type_id) | |
if len(predictions) == 0: | |
st.success('No segments found!') | |
return | |
submit_segments = [] | |
for index, prediction in enumerate(predictions, start=1): | |
category_key = prediction['category'].upper() | |
if category_key not in categories: | |
continue # Skip | |
confidence = prediction['probability'] * 100 | |
if confidence < confidence_threshold: | |
continue | |
submit_segments.append({ | |
'segment': [prediction['start'], prediction['end']], | |
'category': prediction['category'], | |
'actionType': 'skip' | |
}) | |
start_time = seconds_to_time(prediction['start']) | |
end_time = seconds_to_time(prediction['end']) | |
with st.expander( | |
f"[{category_key}] Prediction #{index} ({start_time} \u2192 {end_time})" | |
): | |
url = f"https://www.youtube-nocookie.com/embed/{video_id}?&start={floor(prediction['start'])}&end={ceil(prediction['end'])}" | |
# autoplay=1controls=0&&modestbranding=1&fs=0 | |
# , width=None, height=None, scrolling=False | |
components.iframe(url, width=670, height=376) | |
text = ' '.join(w['text'] for w in prediction['words']) | |
st.write(f"**Times:** {start_time} \u2192 {end_time}") | |
st.write( | |
f"**Category:** {CATGEGORY_OPTIONS[category_key]}") | |
st.write(f"**Confidence:** {confidence:.2f}%") | |
st.write(f'**Text:** "{text}"') | |
if not submit_segments: | |
st.success( | |
f'No segments found! ({len(predictions)} ignored due to filters/settings)') | |
return | |
num_hidden = len(predictions) - len(submit_segments) | |
if num_hidden > 0: | |
st.info( | |
f'{num_hidden} predictions hidden (adjust the settings and filters to view them all).') | |
json_data = quote(json.dumps(submit_segments)) | |
link = f'https://www.youtube.com/watch?v={video_id}#segments={json_data}' | |
st.markdown(create_button('Submit Segments', link), | |
unsafe_allow_html=True) | |
st.markdown(f"""<div style="text-align: center;font-size: 16px;margin-top: 6px"> | |
<a href="https://wiki.sponsor.ajay.app/w/Automating_Submissions" target="_blank" rel="noopener noreferrer">(Review before submitting!)</a> | |
</div>""", unsafe_allow_html=True) | |
if __name__ == '__main__': | |
main() | |