Spaces:
Runtime error
Runtime error
from PIL import Image | |
import torch | |
from transformers import StoppingCriteria, StoppingCriteriaList | |
import dataclasses | |
from enum import auto, Enum | |
from typing import List, Any | |
class SeparatorStyle(Enum): | |
"""Different separator style.""" | |
SINGLE = auto() | |
TWO = auto() | |
class Conversation: | |
"""A class that keeps all conversation history.""" | |
system: str | |
roles: List[str] | |
messages: List[List[str]] | |
offset: int | |
# system_img: List[Image.Image] = [] | |
sep_style: SeparatorStyle = SeparatorStyle.SINGLE | |
sep: str = "###" | |
sep2: str = None | |
skip_next: bool = False | |
conv_id: Any = None | |
def get_prompt(self): | |
if self.sep_style == SeparatorStyle.SINGLE: | |
ret = self.system + self.sep | |
for role, message in self.messages: | |
if message: | |
#ret += role + ": " + message + self.sep | |
ret += role + ":" + message + self.sep | |
else: | |
ret += role + ":" | |
return ret | |
elif self.sep_style == SeparatorStyle.TWO: | |
seps = [self.sep, self.sep2] | |
ret = self.system + seps[0] | |
for i, (role, message) in enumerate(self.messages): | |
if message: | |
ret += role + ": " + message[0] + seps[i % 2] if isinstance(message, list) else role + ": " + message + seps[i % 2] | |
else: | |
ret += role + ":" | |
return ret | |
elif self.sep_style == "7132": | |
seps = [self.sep, self.sep2] | |
ret = self.system | |
for i, (role, message) in enumerate(self.messages): | |
if message: | |
ret += role + ": " + message[0] + seps[i % 2] if isinstance(message, list) else role + ": " + message + seps[i % 2] | |
else: | |
ret += role + ":" | |
return ret | |
elif self.sep_style == "raw": | |
seps = [self.sep, self.sep2] | |
ret = self.system | |
for i, (role, message) in enumerate(self.messages): | |
if message: | |
ret += role + message + seps[i % 2] | |
else: | |
ret += role | |
return ret | |
else: | |
raise ValueError(f"Invalid style: {self.sep_style}") | |
def append_message(self, role, message): | |
self.messages.append([role, message]) | |
def to_gradio_chatbot(self): | |
ret = [] | |
for i, (role, msg) in enumerate(self.messages[self.offset:]): | |
if i % 2 == 0: | |
if type(msg) is tuple or type(msg) is list: | |
import base64 | |
from io import BytesIO | |
msg, image = msg | |
max_hw, min_hw = max(image.size), min(image.size) | |
aspect_ratio = max_hw / min_hw | |
max_len, min_len = 800, 400 | |
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) | |
longest_edge = int(shortest_edge * aspect_ratio) | |
W, H = image.size | |
if H > W: | |
H, W = longest_edge, shortest_edge | |
else: | |
H, W = shortest_edge, longest_edge | |
image = image.resize((W, H)) | |
# image = image.resize((224, 224)) | |
buffered = BytesIO() | |
image.save(buffered, format="JPEG") | |
img_b64_str = base64.b64encode(buffered.getvalue()).decode() | |
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />' | |
msg = msg.replace('<Img><ImageHere></Img>', img_str) | |
ret.append([msg, None]) | |
else: | |
ret[-1][-1] = msg | |
return ret | |
def copy(self): | |
return Conversation( | |
system=self.system, | |
# system_img=self.system_img, | |
roles=self.roles, | |
messages=[[x, y] for x, y in self.messages], | |
offset=self.offset, | |
sep_style=self.sep_style, | |
sep=self.sep, | |
sep2=self.sep2, | |
conv_id=self.conv_id) | |
def dict(self): | |
return { | |
"system": self.system, | |
# "system_img": self.system_img, | |
"roles": self.roles, | |
"messages": self.messages, | |
"offset": self.offset, | |
"sep": self.sep, | |
"sep2": self.sep2, | |
"conv_id": self.conv_id, | |
} | |
class StoppingCriteriaSub(StoppingCriteria): | |
def __init__(self, stops=[], encounters=1): | |
super().__init__() | |
self.stops = stops | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor): | |
for stop in self.stops: | |
if torch.all((stop == input_ids[0][-len(stop):])).item(): | |
return True | |
return False | |
meta = """meta instruction | |
You are an AI assistant whose name is 浦语. | |
- 浦语 is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless. | |
- 浦语 can understand and communicate fluently in the language chosen by the user such as English and 中文. | |
conversation | |
""" | |
CONV_VISION_7132_v2 = Conversation( | |
system=meta, | |
roles=(" <|User|>", " <|Bot|>"), | |
messages=(), | |
offset=0, | |
sep_style="7132", | |
sep="<TOKENS_UNUSED_0>", | |
sep2="<TOKENS_UNUSED_1>", | |
) | |