Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,7 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
import json
|
| 4 |
import uuid
|
|
@@ -6,14 +9,156 @@ from datasets import Dataset
|
|
| 6 |
from huggingface_hub import HfApi, login
|
| 7 |
import time
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
# Create the Gradio interface
|
| 10 |
with gr.Blocks() as demo:
|
| 11 |
with gr.Row():
|
| 12 |
with gr.Column(scale=3):
|
| 13 |
-
# Create a State component to store the conversation history
|
| 14 |
-
chat_history = gr.State([])
|
| 15 |
-
|
| 16 |
-
# Create the ChatInterface
|
| 17 |
chatbot = gr.ChatInterface(
|
| 18 |
predict,
|
| 19 |
additional_inputs=[
|
|
@@ -22,15 +167,6 @@ with gr.Blocks() as demo:
|
|
| 22 |
],
|
| 23 |
type="messages"
|
| 24 |
)
|
| 25 |
-
|
| 26 |
-
# Create a function to update the chat history state
|
| 27 |
-
def update_history(message, history):
|
| 28 |
-
chat_history.value = history
|
| 29 |
-
return message, history
|
| 30 |
-
|
| 31 |
-
# Intercept chatbot responses to update our history state
|
| 32 |
-
# This requires modifying your predict function to pass through the history
|
| 33 |
-
# And connecting it to the update_history function
|
| 34 |
|
| 35 |
with gr.Column(scale=1):
|
| 36 |
report_button = gr.Button("Share Feedback", variant="primary")
|
|
@@ -65,7 +201,10 @@ with gr.Blocks() as demo:
|
|
| 65 |
|
| 66 |
# Connect the submit button to the submit_research_feedback function with the current chat history
|
| 67 |
submit_button.click(
|
| 68 |
-
lambda satisfaction, feedback_text
|
| 69 |
-
inputs=[satisfaction, feedback_text
|
| 70 |
outputs=response_text
|
| 71 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from threading import Thread
|
| 5 |
import os
|
| 6 |
import json
|
| 7 |
import uuid
|
|
|
|
| 9 |
from huggingface_hub import HfApi, login
|
| 10 |
import time
|
| 11 |
|
| 12 |
+
# Install required packages if not present
|
| 13 |
+
from gradio_modal import Modal
|
| 14 |
+
import huggingface_hub
|
| 15 |
+
import datasets
|
| 16 |
+
|
| 17 |
+
# Model setup
|
| 18 |
+
checkpoint = "WillHeld/soft-raccoon"
|
| 19 |
+
device = "cuda"
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
| 21 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
| 22 |
+
|
| 23 |
+
# Constants for dataset
|
| 24 |
+
DATASET_REPO = "WillHeld/model-feedback" # Replace with your username
|
| 25 |
+
DATASET_PATH = "./feedback_data" # Local path to store feedback
|
| 26 |
+
DATASET_FILENAME = "feedback.jsonl" # Filename for feedback data
|
| 27 |
+
|
| 28 |
+
# Ensure feedback directory exists
|
| 29 |
+
os.makedirs(DATASET_PATH, exist_ok=True)
|
| 30 |
+
|
| 31 |
+
# Feedback storage functions
|
| 32 |
+
def save_feedback_locally(conversation, satisfaction, feedback_text):
|
| 33 |
+
"""Save feedback to a local JSONL file"""
|
| 34 |
+
# Create a unique ID for this feedback entry
|
| 35 |
+
feedback_id = str(uuid.uuid4())
|
| 36 |
+
|
| 37 |
+
# Create a timestamp
|
| 38 |
+
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
| 39 |
+
|
| 40 |
+
# Prepare the feedback data
|
| 41 |
+
feedback_data = {
|
| 42 |
+
"id": feedback_id,
|
| 43 |
+
"timestamp": timestamp,
|
| 44 |
+
"conversation": conversation,
|
| 45 |
+
"satisfaction": satisfaction,
|
| 46 |
+
"feedback": feedback_text
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
# Save to local file
|
| 50 |
+
feedback_file = os.path.join(DATASET_PATH, DATASET_FILENAME)
|
| 51 |
+
with open(feedback_file, "a") as f:
|
| 52 |
+
f.write(json.dumps(feedback_data) + "\n")
|
| 53 |
+
|
| 54 |
+
return feedback_id
|
| 55 |
+
|
| 56 |
+
def push_feedback_to_hub(hf_token=None):
|
| 57 |
+
"""Push the local feedback data to HuggingFace as a dataset"""
|
| 58 |
+
# Check if we have a token
|
| 59 |
+
if hf_token is None:
|
| 60 |
+
# Try to get token from environment variable
|
| 61 |
+
hf_token = os.environ.get("HF_TOKEN")
|
| 62 |
+
if hf_token is None:
|
| 63 |
+
print("No HuggingFace token provided. Cannot push to Hub.")
|
| 64 |
+
return False
|
| 65 |
+
|
| 66 |
+
try:
|
| 67 |
+
# Login to HuggingFace
|
| 68 |
+
login(token=hf_token)
|
| 69 |
+
|
| 70 |
+
# Check if we have data to push
|
| 71 |
+
feedback_file = os.path.join(DATASET_PATH, DATASET_FILENAME)
|
| 72 |
+
if not os.path.exists(feedback_file):
|
| 73 |
+
print("No feedback data to push.")
|
| 74 |
+
return False
|
| 75 |
+
|
| 76 |
+
# Load data from the JSONL file
|
| 77 |
+
with open(feedback_file, "r") as f:
|
| 78 |
+
feedback_data = [json.loads(line) for line in f]
|
| 79 |
+
|
| 80 |
+
# Create a dataset from the feedback data
|
| 81 |
+
dataset = Dataset.from_list(feedback_data)
|
| 82 |
+
|
| 83 |
+
# Push to Hub
|
| 84 |
+
dataset.push_to_hub(
|
| 85 |
+
DATASET_REPO,
|
| 86 |
+
private=True # Set to False if you want the dataset to be public
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
print(f"Feedback data pushed to {DATASET_REPO} successfully.")
|
| 90 |
+
return True
|
| 91 |
+
|
| 92 |
+
except Exception as e:
|
| 93 |
+
print(f"Error pushing feedback data to Hub: {e}")
|
| 94 |
+
return False
|
| 95 |
+
|
| 96 |
+
# Create a State to store chat history
|
| 97 |
+
chat_history_state = []
|
| 98 |
+
|
| 99 |
+
@spaces.GPU(duration=120)
|
| 100 |
+
def predict(message, history, temperature, top_p):
|
| 101 |
+
global chat_history_state
|
| 102 |
+
|
| 103 |
+
# Update our chat history state
|
| 104 |
+
history.append({"role": "user", "content": message})
|
| 105 |
+
chat_history_state = history.copy()
|
| 106 |
+
|
| 107 |
+
input_text = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=True)
|
| 108 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
| 109 |
+
|
| 110 |
+
# Create a streamer
|
| 111 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 112 |
+
|
| 113 |
+
# Set up generation parameters
|
| 114 |
+
generation_kwargs = {
|
| 115 |
+
"input_ids": inputs,
|
| 116 |
+
"max_new_tokens": 1024,
|
| 117 |
+
"temperature": float(temperature),
|
| 118 |
+
"top_p": float(top_p),
|
| 119 |
+
"do_sample": True,
|
| 120 |
+
"streamer": streamer,
|
| 121 |
+
"eos_token_id": 128009,
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
+
# Run generation in a separate thread
|
| 125 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 126 |
+
thread.start()
|
| 127 |
+
|
| 128 |
+
# Yield from the streamer as tokens are generated
|
| 129 |
+
partial_text = ""
|
| 130 |
+
for new_text in streamer:
|
| 131 |
+
partial_text += new_text
|
| 132 |
+
yield partial_text
|
| 133 |
+
|
| 134 |
+
# After generation is complete, update chat history state with the assistant response
|
| 135 |
+
chat_history_state.append({"role": "assistant", "content": partial_text})
|
| 136 |
+
|
| 137 |
+
# Function to handle the research feedback submission
|
| 138 |
+
def submit_research_feedback(satisfaction, feedback_text):
|
| 139 |
+
"""Save user feedback both locally and to HuggingFace Hub"""
|
| 140 |
+
global chat_history_state
|
| 141 |
+
|
| 142 |
+
# Save locally first
|
| 143 |
+
feedback_id = save_feedback_locally(chat_history_state, satisfaction, feedback_text)
|
| 144 |
+
|
| 145 |
+
# Get token from environment variable
|
| 146 |
+
env_token = os.environ.get("HF_TOKEN")
|
| 147 |
+
|
| 148 |
+
# Use environment token
|
| 149 |
+
push_success = push_feedback_to_hub(env_token)
|
| 150 |
+
|
| 151 |
+
if push_success:
|
| 152 |
+
status_msg = "Thank you for your valuable feedback! Your insights have been saved to the dataset."
|
| 153 |
+
else:
|
| 154 |
+
status_msg = "Thank you for your feedback! It has been saved locally, but couldn't be pushed to the dataset. Please check server logs."
|
| 155 |
+
|
| 156 |
+
return status_msg
|
| 157 |
+
|
| 158 |
# Create the Gradio interface
|
| 159 |
with gr.Blocks() as demo:
|
| 160 |
with gr.Row():
|
| 161 |
with gr.Column(scale=3):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
chatbot = gr.ChatInterface(
|
| 163 |
predict,
|
| 164 |
additional_inputs=[
|
|
|
|
| 167 |
],
|
| 168 |
type="messages"
|
| 169 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
with gr.Column(scale=1):
|
| 172 |
report_button = gr.Button("Share Feedback", variant="primary")
|
|
|
|
| 201 |
|
| 202 |
# Connect the submit button to the submit_research_feedback function with the current chat history
|
| 203 |
submit_button.click(
|
| 204 |
+
lambda satisfaction, feedback_text: submit_research_feedback(satisfaction, feedback_text),
|
| 205 |
+
inputs=[satisfaction, feedback_text],
|
| 206 |
outputs=response_text
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
# Launch the demo
|
| 210 |
+
demo.launch()
|