diva-audio / app.py
Will Held
Text Tweaks
c286cf9
raw
history blame
12.8 kB
import copy
import os
import random
import shutil
import sys
from pathlib import Path
import gradio as gr
import librosa
import numpy as np
import soundfile as sf
import spaces
import torch
import torch.nn.functional as F
from accelerate import infer_auto_device_map
from datasets import Audio
from huggingface_hub import CommitScheduler, delete_file, hf_hub_download
from safetensors.torch import load, load_model
from tinydb import TinyDB
from torch import nn
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoProcessor,
AutoTokenizer,
LlamaForCausalLM,
TextIteratorStreamer,
WhisperForConditionalGeneration,
)
from transformers.generation import GenerationConfig
from models.salmonn import SALMONN
DB_PATH = "user_study.json"
DB_DATASET_ID = "WillHeld/DiVAVotes"
# Download existing DB
if not os.path.isfile(DB_PATH):
print("Downloading DB...")
try:
cache_path = hf_hub_download(
repo_id=DB_DATASET_ID, repo_type="dataset", filename=DB_NAME
)
shutil.copyfile(cache_path, DB_PATH)
print("Downloaded DB")
except Exception as e:
print("Error while downloading DB:", e)
db = TinyDB(DB_PATH)
# Sync local DB with remote repo every 5 minute (only if a change is detected)
scheduler = CommitScheduler(
repo_id=DB_DATASET_ID,
repo_type="dataset",
folder_path=Path(DB_PATH).parent,
every=5,
allow_patterns=DB_NAME,
)
tokenizer = AutoTokenizer.from_pretrained("WillHeld/via-llama")
prefix = torch.tensor([128000, 128006, 882, 128007, 271]).to("cuda")
pre_user_suffix = torch.tensor([271]).to("cuda")
final_header = torch.tensor([128009, 128006, 78191, 128007, 271]).to("cuda")
cache = None
anonymous = False
resampler = Audio(sampling_rate=16_000)
qwen_tokenizer = AutoTokenizer.from_pretrained(
"Qwen/Qwen-Audio-Chat", trust_remote_code=True
)
qwen_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen-Audio-Chat",
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.float16,
).eval()
qwen_model.generation_config = GenerationConfig.from_pretrained(
"Qwen/Qwen-Audio-Chat",
trust_remote_code=True,
do_sample=False,
top_k=50,
top_p=1.0,
)
# salmonn_model = SALMONN(
# ckpt="./SALMONN_PATHS/salmonn_v1.pth",
# whisper_path="./SALMONN_PATHS/whisper-large-v2",
# beats_path="./SALMONN_PATHS/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt",
# vicuna_path="./SALMONN_PATHS/vicuna-13b-v1.1",
# low_resource=False,
# device="cuda:0",
# )
# salmonn_tokenizer = salmonn_model.llama_tokenizer
diva = AutoModel.from_pretrained("WillHeld/DiVA-llama-3-v0-8b", trust_remote_code=True)
@spaces.GPU
@torch.no_grad
def salmonn_fwd(audio_input, prompt, do_sample=False, temperature=0.001):
if audio_input == None:
return ""
sr, y = audio_input
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(
resampler.encode_example({"array": y, "sampling_rate": sr})
)
sf.write("tmp.wav", a["array"], a["sampling_rate"], format="wav")
streamer = TextIteratorStreamer(salmonn_tokenizer)
with torch.cuda.amp.autocast(dtype=torch.float16):
llm_message = salmonn_model.generate(
wav_path="tmp.wav",
prompt=prompt,
do_sample=False,
top_p=1.0,
temperature=0.0,
device="cuda:0",
streamer=streamer,
)
response = ""
for new_tokens in streamer:
response += new_tokens
yield response.replace("</s>", "")
@spaces.GPU
@torch.no_grad
def qwen_audio(audio_input, prompt, do_sample=False, temperature=0.001):
if audio_input == None:
return ""
sr, y = audio_input
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(
resampler.encode_example({"array": y, "sampling_rate": sr})
)
sf.write("tmp.wav", a["array"], a["sampling_rate"], format="wav")
query = qwen_tokenizer.from_list_format([{"audio": "tmp.wav"}, {"text": prompt}])
response, history = qwen_model.chat(
qwen_tokenizer,
query=query,
system="You are a helpful assistant.",
history=None,
)
return response
@spaces.GPU
@torch.no_grad
def via(audio_input, prompt, do_sample=False, temperature=0.001):
if audio_input == None:
return ""
sr, y = audio_input
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(
resampler.encode_example({"array": y, "sampling_rate": sr})
)
audio = a["array"]
yield from diva.generate_stream(audio, prompt)
def transcribe(audio_input, text_prompt, state, model_order):
yield (
gr.Button(
value="Waiting in queue for GPU time...",
interactive=False,
variant="primary",
),
"",
"",
"",
gr.Button(visible=False),
gr.Button(visible=False),
gr.Button(visible=False),
state,
)
if audio_input == None:
return (
"",
"",
"",
gr.Button(visible=False),
gr.Button(visible=False),
gr.Button(visible=False),
state,
)
def gen_from_via():
via_resp = via(audio_input, text_prompt)
for resp in via_resp:
v_resp = gr.Textbox(
value=resp,
visible=True,
label=model_names[0] if not anonymous else f"Model {order}",
)
yield (v_resp, s_resp, q_resp)
def gen_from_salmonn():
salmonn_resp = salmonn_fwd(audio_input, text_prompt)
for resp in salmonn_resp:
s_resp = gr.Textbox(
value=resp,
visible=True,
label=model_names[1] if not anonymous else f"Model {order}",
)
yield (v_resp, s_resp, q_resp)
def gen_from_qwen():
qwen_resp = qwen_audio(audio_input, text_prompt)
q_resp = gr.Textbox(
value=qwen_resp,
visible=True,
label=model_names[2] if not anonymous else f"Model {order}",
)
yield (v_resp, s_resp, q_resp)
spinner_id = 0
spinners = ["◐ ", "β—“ ", "β—‘", "β—’"]
initial_responses = [("", "", "")]
resp_generators = [
gen_from_via(),
# gen_from_salmonn(),
gen_from_qwen(),
]
order = -1
resp_generators = [
resp_generators[model_order[0]],
resp_generators[model_order[1]],
resp_generators[model_order[2]],
]
for generator in [initial_responses, *resp_generators]:
order += 1
for resps in generator:
v_resp, s_resp, q_resp = resps
resp_1 = resps[model_order[0]]
resp_2 = resps[model_order[1]]
resp_3 = resps[model_order[2]]
spinner = spinners[spinner_id]
spinner_id = (spinner_id + 1) % 4
yield (
gr.Button(
value=spinner + " Generating Responses " + spinner,
interactive=False,
variant="primary",
),
resp_1,
resp_2,
resp_3,
gr.Button(visible=False),
gr.Button(visible=False),
gr.Button(visible=False),
state,
)
yield (
gr.Button(
value="Click to compare models!", interactive=True, variant="primary"
),
resp_1,
resp_2,
resp_3,
gr.Button(visible=True),
gr.Button(visible=False),
gr.Button(visible=True),
responses_complete(state),
)
def on_page_load(state, model_order):
if state == 0:
gr.Info(
"Record what you want to say to your AI Assistant! All Audio recordings are stored only temporarily and will be erased as soon as you exit this page."
)
state = 1
if anonymous:
random.shuffle(model_order)
return state, model_order
def recording_complete(state):
if state == 1:
gr.Info(
"Submit your recording to get responses from all three models! You can also influence the model responses with an optional prompt."
)
state = 2
return (
gr.Button(
value="Click to compare models!", interactive=True, variant="primary"
),
state,
)
def responses_complete(state):
if state == 2:
gr.Info(
"Give us your feedback! Mark which model gave you the best response so we can understand the quality of these different voice assistant models. NOTE: This will save an (irreversible) hash of your inputs to deduplicate any repeated votes."
)
state = 3
return state
def clear_factory(button_id):
def clear(audio_input, text_prompt, model_order):
if button_id != None:
sr, y = audio_input
with scheduler.lock:
db.insert(
{
"audio_hash": hash(str(y)),
"text_prompt": hash(text_prompt),
"best": model_shorthand[model_order[button_id]],
}
)
if anonymous:
random.shuffle(model_order)
return (
model_order,
gr.Button(
value="Record Audio to Submit!",
interactive=False,
),
gr.Button(visible=False),
gr.Button(visible=False),
gr.Button(visible=False),
None,
gr.Textbox(visible=False),
gr.Textbox(visible=False),
gr.Textbox(visible=False),
)
return clear
theme = gr.themes.Soft(
primary_hue=gr.themes.Color(
c100="#82000019",
c200="#82000033",
c300="#8200004c",
c400="#82000066",
c50="#8200007f",
c500="#8200007f",
c600="#82000099",
c700="#820000b2",
c800="#820000cc",
c900="#820000e5",
c950="#820000f2",
),
secondary_hue="rose",
neutral_hue="stone",
)
model_names = ["Llama 3 DiVA", "SALMONN", "Qwen Audio"]
model_shorthand = ["via", "salmonn", "qwen"]
with gr.Blocks(theme=theme) as demo:
state = gr.State(0)
model_order = gr.State([0, 1, 2])
with gr.Row():
audio_input = gr.Audio(
sources=["microphone"], streaming=False, label="Audio Input"
)
with gr.Row():
prompt = gr.Textbox(
value="",
label="Text Prompt",
placeholder="Optional: Additional text prompt to influence how the model responds to your speech. e.g. 'Respond in a Haiku style.' or 'Translate the input to Arabic'",
)
with gr.Row():
btn = gr.Button(value="Record Audio to Submit!", interactive=False)
with gr.Row():
with gr.Column(scale=1):
out1 = gr.Textbox(visible=False)
best1 = gr.Button(value="This response is best", visible=False)
with gr.Column(scale=1):
out2 = gr.Textbox(visible=False)
best2 = gr.Button(value="This response is best", visible=False)
with gr.Column(scale=1):
out3 = gr.Textbox(visible=False)
best3 = gr.Button(value="This response is best", visible=False)
audio_input.stop_recording(
recording_complete,
[state],
[btn, state],
)
audio_input.start_recording(
lambda: gr.Button(
value="Uploading Audio to Cloud", interactive=False, variant="primary"
),
None,
btn,
)
btn.click(
fn=transcribe,
inputs=[audio_input, prompt, state, model_order],
outputs=[btn, out1, out2, out3, best1, best2, best3, state],
)
best1.click(
fn=clear_factory(0),
inputs=[audio_input, prompt, model_order],
outputs=[model_order, btn, best1, best2, best3, audio_input, out1, out2, out3],
)
best2.click(
fn=clear_factory(1),
inputs=[audio_input, prompt, model_order],
outputs=[model_order, btn, best1, best2, best3, audio_input, out1, out2, out3],
)
best3.click(
fn=clear_factory(2),
inputs=[audio_input, prompt, model_order],
outputs=[model_order, btn, best1, best2, best3, audio_input, out1, out2, out3],
)
audio_input.clear(
clear_factory(None),
[audio_input, prompt, model_order],
[model_order, btn, best1, best2, best3, audio_input, out1, out2, out3],
)
demo.load(
fn=on_page_load, inputs=[state, model_order], outputs=[state, model_order]
)
demo.launch(share=True)