diva-audio-chat / app.py
Helw150
Test
bf9ca9b
raw
history blame
6.02 kB
import time
import traceback
from dataclasses import dataclass, field
import gradio as gr
import librosa
import numpy as np
import soundfile as sf
import spaces
import torch
import xxhash
from datasets import Audio
from transformers import AutoModel
import io
if gr.NO_RELOAD:
diva_model = AutoModel.from_pretrained(
"WillHeld/DiVA-llama-3-v0-8b", trust_remote_code=True
)
resampler = Audio(sampling_rate=16_000)
@spaces.GPU
@torch.no_grad
def diva_audio(audio_input, do_sample=False, temperature=0.001, prev_outs=None):
sr, y = audio_input
x = xxhash.xxh32(bytes(y)).hexdigest()
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(
resampler.encode_example({"array": y, "sampling_rate": sr})
)
yield from diva_model.generate_stream(
a["array"],
(
"Your name is DiVA, which stands for Distilled Voice Assistant. You were trained with early-fusion training to merge OpenAI's Whisper and Meta AI's Llama 3 8B to provide end-to-end voice processing. You should give brief and helpful answers, in a conversational style. The user is talking to you with their voice and you are responding with text."
if prev_outs == None
else None
),
do_sample=do_sample,
max_new_tokens=256,
init_outputs=prev_outs,
return_outputs=True,
)
@dataclass
class AppState:
stream: np.ndarray | None = None
sampling_rate: int = 0
stopped: bool = False
conversation: list = field(default_factory=list)
model_outs: any = None
def process_audio(audio: tuple, state: AppState):
return audio, state
@spaces.GPU(duration=40, progress=gr.Progress(track_tqdm=True))
def response(state: AppState, audio: tuple):
if not audio:
return AppState()
state.stream = audio[1]
state.sampling_rate = audio[0]
file_name = f"/tmp/{xxhash.xxh32(bytes(state.stream)).hexdigest()}.wav"
sf.write(file_name, state.stream, state.sampling_rate, format="wav")
state.conversation.append(
{"role": "user", "content": {"path": file_name, "mime_type": "audio/wav"}}
)
if spaces.config.Config.zero_gpu:
if state.model_outs is not None:
state.model_outs.past_key_values = tuple(
tuple(torch.tensor(vec).cuda() for vec in tup)
for tup in state.model_outs.past_key_values
)
print(outs)
prev_outs = state.model_outs
start = False
for resp, outs in diva_audio(
(state.sampling_rate, state.stream),
prev_outs=(prev_out if state.model_outs is not None is not None else None),
):
if not start:
state.conversation.append({"role": "assistant", "content": resp})
start = True
else:
state.conversation[-1]["content"] = resp
# yield state, state.conversation
del outs.logits
del outs.hidden_states
if spaces.config.Config.zero_gpu:
outs.past_key_values = tuple(
tuple(vec.cpu().numpy() for vec in tup) for tup in outs.past_key_values
)
print(outs)
return (
AppState(conversation=state.conversation),
state.conversation,
)
def start_recording_user(state: AppState):
return None
theme = gr.themes.Soft(
primary_hue=gr.themes.Color(
c100="#82000019",
c200="#82000033",
c300="#8200004c",
c400="#82000066",
c50="#8200007f",
c500="#8200007f",
c600="#82000099",
c700="#820000b2",
c800="#820000cc",
c900="#820000e5",
c950="#820000f2",
),
secondary_hue="rose",
neutral_hue="stone",
)
js = """
async function main() {
const script1 = document.createElement("script");
script1.src = "https://cdn.jsdelivr.net/npm/onnxruntime-web@1.14.0/dist/ort.js";
document.head.appendChild(script1)
const script2 = document.createElement("script");
script2.onload = async () => {
console.log("vad loaded") ;
var record = document.querySelector('.record-button');
record.textContent = "Just Start Talking!"
record.style = "width: 11vw"
const myvad = await vad.MicVAD.new({
onSpeechStart: () => {
var record = document.querySelector('.record-button');
if (record != null) {
console.log(record);
record.click();
}
},
onSpeechEnd: (audio) => {
var stop = document.querySelector('.stop-button');
if (stop != null) {
console.log(stop);
stop.click();
}
}
})
myvad.start()
}
script2.src = "https://cdn.jsdelivr.net/npm/@ricky0123/vad-web@0.0.7/dist/bundle.min.js";
script1.onload = () => {
console.log("onnx loaded")
document.head.appendChild(script2)
};
}
"""
js_reset = """
() => {
var record = document.querySelector('.record-button');
record.textContent = "Just Start Talking!"
record.style = "width: 11vw"
}
"""
with gr.Blocks(theme=theme, js=js) as demo:
with gr.Row():
input_audio = gr.Audio(
label="Input Audio",
sources=["microphone"],
type="numpy",
streaming=False,
)
with gr.Row():
chatbot = gr.Chatbot(label="Conversation", type="messages")
state = gr.State(value=AppState())
stream = input_audio.start_recording(
process_audio,
[input_audio, state],
[input_audio, state],
)
respond = input_audio.stop_recording(
response, [state, input_audio], [state, chatbot]
)
restart = respond.then(start_recording_user, [state], [input_audio]).then(
lambda state: state, state, state, js=js_reset
)
cancel = gr.Button("Restart Conversation", variant="stop")
cancel.click(
lambda: (AppState(stopped=True), gr.Audio(recording=False)),
None,
[state, input_audio],
cancels=[respond, restart],
)
if __name__ == "__main__":
demo.launch()