Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
# Load the model and tokenizer | |
model_name = "WhoLetMeCook/ChefBERT" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
# Function to make predictions | |
def predict_emotion(text): | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
prediction = torch.argmax(outputs.logits, dim=-1).item() | |
return "Positive Emotion" if prediction == 1 else "Negative Emotion" | |
# Streamlit app layout | |
st.title("ChefBERT Emotion Classifier") | |
st.write("Enter a sentence and ChefBERT will predict whether the emotion is positive or negative.") | |
# Input box | |
user_input = st.text_input("Input Sentence", "") | |
if user_input: | |
result = predict_emotion(user_input) | |
st.write("Prediction: ", result) | |