space_to_dataset_saver / app_parquet.py
Wauplin's picture
Wauplin HF staff
Update app_parquet.py
b61bd8e verified
# Taken from https://huggingface.co/spaces/hysts-samples/save-user-preferences
# Credits to @@hysts
import datetime
import json
import shutil
import tempfile
import uuid
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
import gradio as gr
import pyarrow as pa
import pyarrow.parquet as pq
from gradio_client import Client
from huggingface_hub import CommitScheduler
from huggingface_hub.hf_api import HfApi
#######################
# Parquet scheduler #
# Run in scheduler.py #
#######################
class ParquetScheduler(CommitScheduler):
"""
Usage: configure the scheduler with a repo id. Once started, you can add data to be uploaded to the Hub. 1 `.append`
call will result in 1 row in your final dataset.
```py
# Start scheduler
>>> scheduler = ParquetScheduler(repo_id="my-parquet-dataset")
# Append some data to be uploaded
>>> scheduler.append({...})
>>> scheduler.append({...})
>>> scheduler.append({...})
```
The scheduler will automatically infer the schema from the data it pushes.
Optionally, you can manually set the schema yourself:
```py
>>> scheduler = ParquetScheduler(
... repo_id="my-parquet-dataset",
... schema={
... "prompt": {"_type": "Value", "dtype": "string"},
... "negative_prompt": {"_type": "Value", "dtype": "string"},
... "guidance_scale": {"_type": "Value", "dtype": "int64"},
... "image": {"_type": "Image"},
... },
... )
See https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Value for the list of
possible values.
"""
def __init__(
self,
*,
repo_id: str,
schema: Optional[Dict[str, Dict[str, str]]] = None,
every: Union[int, float] = 5,
path_in_repo: Optional[str] = "data",
repo_type: Optional[str] = "dataset",
revision: Optional[str] = None,
private: bool = False,
token: Optional[str] = None,
allow_patterns: Union[List[str], str, None] = None,
ignore_patterns: Union[List[str], str, None] = None,
hf_api: Optional[HfApi] = None,
) -> None:
super().__init__(
repo_id=repo_id,
folder_path="dummy", # not used by the scheduler
every=every,
path_in_repo=path_in_repo,
repo_type=repo_type,
revision=revision,
private=private,
token=token,
allow_patterns=allow_patterns,
ignore_patterns=ignore_patterns,
hf_api=hf_api,
)
self._rows: List[Dict[str, Any]] = []
self._schema = schema
def append(self, row: Dict[str, Any]) -> None:
"""Add a new item to be uploaded."""
with self.lock:
self._rows.append(row)
def push_to_hub(self):
# Check for new rows to push
with self.lock:
rows = self._rows
self._rows = []
if not rows:
return
print(f"Got {len(rows)} item(s) to commit.")
# Load images + create 'features' config for datasets library
schema: Dict[str, Dict] = self._schema or {}
path_to_cleanup: List[Path] = []
for row in rows:
for key, value in row.items():
# Infer schema (for `datasets` library)
if key not in schema:
schema[key] = _infer_schema(key, value)
# Load binary files if necessary
if schema[key]["_type"] in ("Image", "Audio"):
# It's an image or audio: we load the bytes and remember to cleanup the file
file_path = Path(value)
if file_path.is_file():
row[key] = {
"path": file_path.name,
"bytes": file_path.read_bytes(),
}
path_to_cleanup.append(file_path)
# Complete rows if needed
for row in rows:
for feature in schema:
if feature not in row:
row[feature] = None
# Export items to Arrow format
table = pa.Table.from_pylist(rows)
# Add metadata (used by datasets library)
table = table.replace_schema_metadata(
{"huggingface": json.dumps({"info": {"features": schema}})}
)
# Write to parquet file
archive_file = tempfile.NamedTemporaryFile()
pq.write_table(table, archive_file.name)
# Upload
self.api.upload_file(
repo_id=self.repo_id,
repo_type=self.repo_type,
revision=self.revision,
path_in_repo=f"{uuid.uuid4()}.parquet",
path_or_fileobj=archive_file.name,
)
print(f"Commit completed.")
# Cleanup
archive_file.close()
for path in path_to_cleanup:
path.unlink(missing_ok=True)
def _infer_schema(key: str, value: Any) -> Dict[str, str]:
"""
Infer schema for the `datasets` library.
See https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Value.
"""
if "image" in key:
return {"_type": "Image"}
if "audio" in key:
return {"_type": "Audio"}
if isinstance(value, int):
return {"_type": "Value", "dtype": "int64"}
if isinstance(value, float):
return {"_type": "Value", "dtype": "float64"}
if isinstance(value, bool):
return {"_type": "Value", "dtype": "bool"}
if isinstance(value, bytes):
return {"_type": "Value", "dtype": "binary"}
# Otherwise in last resort => convert it to a string
return {"_type": "Value", "dtype": "string"}
#################
# Gradio app #
# Run in app.py #
#################
PARQUET_DATASET_DIR = Path("parquet_dataset")
PARQUET_DATASET_DIR.mkdir(parents=True, exist_ok=True)
scheduler = ParquetScheduler(repo_id="example-space-to-dataset-parquet")
# client = Client("stabilityai/stable-diffusion") # Space is paused
# client = Client("runwayml/stable-diffusion-v1-5") # Space has been deleted
client = Client("black-forest-labs/FLUX.1-schnell")
def generate(prompt: str) -> tuple[str, list[str]]:
"""Generate images on 'submit' button."""
# Generate from https://huggingface.co/spaces/stabilityai/stable-diffusion
# out_dir = client.predict(prompt, "", 9, fn_index=1) # Space 'stabilityai/stable-diffusion' is paused
# out_dir = client.predict(prompt, fn_index=1) # Space "runwayml/stable-diffusion-v1-5" has been deleted
image_path, _ = client.predict(prompt, api_name="/infer")
# Save config used to generate data
with tempfile.NamedTemporaryFile(
mode="w", suffix=".json", delete=False
) as config_file:
json.dump(
{"prompt": prompt, "negative_prompt": "", "guidance_scale": 9}, config_file
)
return config_file.name, image_path
def get_selected_index(evt: gr.SelectData) -> int:
"""Select "best" image."""
return evt.index
def save_preference(
config_path: str, image_path: str
) -> None:
"""Save preference, i.e. move images to a new folder and send paths+config to scheduler."""
save_dir = PARQUET_DATASET_DIR / f"{uuid.uuid4()}"
save_dir.mkdir(parents=True, exist_ok=True)
# Load config
with open(config_path) as f:
data = json.load(f)
# Add selected item + timestamp
data["selected_index"] = 0
data["timestamp"] = datetime.datetime.utcnow().isoformat()
# Copy and add images
for index in range(4): # fake 4 images
name = f"{index:03d}"
dst_path = save_dir / f"{name}{Path(image_path).suffix}"
shutil.copyfile(image_path, dst_path)
data[f"image_{name}"] = dst_path
# Send to scheduler
scheduler.append(data)
def clear() -> tuple[dict, dict, dict]:
"""Clear all values once saved."""
return (gr.update(value=None), gr.update(value=None), gr.update(interactive=False))
def get_demo():
with gr.Group():
prompt = gr.Text(show_label=False, placeholder="Prompt")
config_path = gr.Text(visible=False)
gallery = gr.Gallery(show_label=False)
selected_index = gr.Number(visible=False, precision=0)
save_preference_button = gr.Button("Save preference", interactive=False)
# Generate images on submit
prompt.submit(fn=generate, inputs=prompt, outputs=[config_path, gallery],).success(
fn=lambda: gr.update(interactive=True),
outputs=save_preference_button,
queue=False,
)
# Save preference on click
save_preference_button.click(
fn=save_preference,
inputs=[config_path, gallery],
queue=False,
).then(
fn=clear,
outputs=[config_path, gallery, save_preference_button],
queue=False,
)