Spaces:
Running
Running
import cv2 | |
import math | |
import torch | |
import numpy as np | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as checkpoint | |
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ | |
import os | |
import gdown | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
def window_partition(x, window_size): | |
""" | |
Args: | |
x: (B, H, W, C) | |
window_size (int): window size | |
Returns: | |
windows: (num_windows*B, window_size, window_size, C) | |
""" | |
B, H, W, C = x.shape | |
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) | |
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | |
return windows | |
def window_reverse(windows, window_size, H, W): | |
""" | |
Args: | |
windows: (num_windows*B, window_size, window_size, C) | |
window_size (int): Window size | |
H (int): Height of image | |
W (int): Width of image | |
Returns: | |
x: (B, H, W, C) | |
""" | |
B = int(windows.shape[0] / (H * W / window_size / window_size)) | |
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | |
return x | |
class WindowAttention(nn.Module): | |
r""" Window based multi-head self attention (W-MSA) module with relative position bias. | |
It supports both of shifted and non-shifted window. | |
Args: | |
dim (int): Number of input channels. | |
window_size (tuple[int]): The height and width of the window. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set | |
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
""" | |
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.dim = dim | |
self.window_size = window_size # Wh, Ww | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
# define a parameter table of relative position bias | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(self.window_size[0]) | |
coords_w = torch.arange(self.window_size[1]) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += self.window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 | |
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
self.register_buffer("relative_position_index", relative_position_index) | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
trunc_normal_(self.relative_position_bias_table, std=.02) | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, x, mask=None): | |
""" | |
Args: | |
x: input features with shape of (num_windows*B, N, C) | |
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None | |
""" | |
with torch.cuda.amp.autocast(True): | |
B_, N, C = x.shape | |
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
with torch.cuda.amp.autocast(False): | |
q, k, v = qkv[0].float(), qkv[1].float(), qkv[2].float() # make torchscript happy (cannot use tensor as tuple) | |
q = q * self.scale | |
attn = (q @ k.transpose(-2, -1)) | |
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( | |
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH | |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
attn = attn + relative_position_bias.unsqueeze(0) | |
if mask is not None: | |
nW = mask.shape[0] | |
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) | |
attn = attn.view(-1, self.num_heads, N, N) | |
attn = self.softmax(attn) | |
else: | |
attn = self.softmax(attn) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) | |
with torch.cuda.amp.autocast(True): | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
def extra_repr(self) -> str: | |
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}' | |
def flops(self, N): | |
# calculate flops for 1 window with token length of N | |
flops = 0 | |
# qkv = self.qkv(x) | |
flops += N * self.dim * 3 * self.dim | |
# attn = (q @ k.transpose(-2, -1)) | |
flops += self.num_heads * N * (self.dim // self.num_heads) * N | |
# x = (attn @ v) | |
flops += self.num_heads * N * N * (self.dim // self.num_heads) | |
# x = self.proj(x) | |
flops += N * self.dim * self.dim | |
return flops | |
class SwinTransformerBlock(nn.Module): | |
r""" Swin Transformer Block. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resulotion. | |
num_heads (int): Number of attention heads. | |
window_size (int): Window size. | |
shift_size (int): Shift size for SW-MSA. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
""" | |
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, | |
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., | |
act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.num_heads = num_heads | |
self.window_size = window_size | |
self.shift_size = shift_size | |
self.mlp_ratio = mlp_ratio | |
if min(self.input_resolution) <= self.window_size: | |
# if window size is larger than input resolution, we don't partition windows | |
self.shift_size = 0 | |
self.window_size = min(self.input_resolution) | |
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" | |
self.norm1 = norm_layer(dim) | |
self.attn = WindowAttention( | |
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, | |
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
if self.shift_size > 0: | |
# calculate attention mask for SW-MSA | |
H, W = self.input_resolution | |
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 | |
h_slices = (slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None)) | |
w_slices = (slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None)) | |
cnt = 0 | |
for h in h_slices: | |
for w in w_slices: | |
img_mask[:, h, w, :] = cnt | |
cnt += 1 | |
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 | |
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) | |
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | |
else: | |
attn_mask = None | |
self.register_buffer("attn_mask", attn_mask) | |
def forward(self, x): | |
H, W = self.input_resolution | |
B, L, C = x.shape | |
assert L == H * W, "input feature has wrong size" | |
shortcut = x | |
x = self.norm1(x) | |
x = x.view(B, H, W, C) | |
# cyclic shift | |
if self.shift_size > 0: | |
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) | |
else: | |
shifted_x = x | |
# partition windows | |
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C | |
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C | |
# W-MSA/SW-MSA | |
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C | |
# merge windows | |
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) | |
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C | |
# reverse cyclic shift | |
if self.shift_size > 0: | |
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) | |
else: | |
x = shifted_x | |
x = x.view(B, H * W, C) | |
# FFN | |
x = shortcut + self.drop_path(x) | |
with torch.cuda.amp.autocast(True): | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
def extra_repr(self) -> str: | |
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ | |
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" | |
def flops(self): | |
flops = 0 | |
H, W = self.input_resolution | |
# norm1 | |
flops += self.dim * H * W | |
# W-MSA/SW-MSA | |
nW = H * W / self.window_size / self.window_size | |
flops += nW * self.attn.flops(self.window_size * self.window_size) | |
# mlp | |
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio | |
# norm2 | |
flops += self.dim * H * W | |
return flops | |
class PatchMerging(nn.Module): | |
r""" Patch Merging Layer. | |
Args: | |
input_resolution (tuple[int]): Resolution of input feature. | |
dim (int): Number of input channels. | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
""" | |
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.input_resolution = input_resolution | |
self.dim = dim | |
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | |
self.norm = norm_layer(4 * dim) | |
def forward(self, x): | |
""" | |
x: B, H*W, C | |
""" | |
H, W = self.input_resolution | |
B, L, C = x.shape | |
assert L == H * W, "input feature has wrong size" | |
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." | |
x = x.view(B, H, W, C) | |
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C | |
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C | |
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C | |
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C | |
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C | |
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C | |
x = self.norm(x) | |
x = self.reduction(x) | |
return x | |
def extra_repr(self) -> str: | |
return f"input_resolution={self.input_resolution}, dim={self.dim}" | |
def flops(self): | |
H, W = self.input_resolution | |
flops = H * W * self.dim | |
flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim | |
return flops | |
class BasicLayer(nn.Module): | |
""" A basic Swin Transformer layer for one stage. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resolution. | |
depth (int): Number of blocks. | |
num_heads (int): Number of attention heads. | |
window_size (int): Local window size. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
""" | |
def __init__(self, dim, input_resolution, depth, num_heads, window_size, | |
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.depth = depth | |
self.use_checkpoint = use_checkpoint | |
# build blocks | |
self.blocks = nn.ModuleList([ | |
SwinTransformerBlock(dim=dim, input_resolution=input_resolution, | |
num_heads=num_heads, window_size=window_size, | |
shift_size=0 if (i % 2 == 0) else window_size // 2, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop, attn_drop=attn_drop, | |
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, | |
norm_layer=norm_layer) | |
for i in range(depth)]) | |
# patch merging layer | |
if downsample is not None: | |
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) | |
else: | |
self.downsample = None | |
def forward(self, x): | |
for blk in self.blocks: | |
if self.use_checkpoint: | |
x = checkpoint.checkpoint(blk, x) | |
else: | |
x = blk(x) | |
if self.downsample is not None: | |
x = self.downsample(x) | |
return x | |
def extra_repr(self) -> str: | |
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" | |
def flops(self): | |
flops = 0 | |
for blk in self.blocks: | |
flops += blk.flops() | |
if self.downsample is not None: | |
flops += self.downsample.flops() | |
return flops | |
class PatchEmbed(nn.Module): | |
r""" Image to Patch Embedding | |
Args: | |
img_size (int): Image size. Default: 224. | |
patch_size (int): Patch token size. Default: 4. | |
in_chans (int): Number of input image channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
norm_layer (nn.Module, optional): Normalization layer. Default: None | |
""" | |
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.patches_resolution = patches_resolution | |
self.num_patches = patches_resolution[0] * patches_resolution[1] | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
if norm_layer is not None: | |
self.norm = norm_layer(embed_dim) | |
else: | |
self.norm = None | |
def forward(self, x): | |
B, C, H, W = x.shape | |
# FIXME look at relaxing size constraints | |
assert H == self.img_size[0] and W == self.img_size[1], \ | |
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C | |
if self.norm is not None: | |
x = self.norm(x) | |
return x | |
def flops(self): | |
Ho, Wo = self.patches_resolution | |
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) | |
if self.norm is not None: | |
flops += Ho * Wo * self.embed_dim | |
return flops | |
class SwinTransformer(nn.Module): | |
r""" Swin Transformer | |
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - | |
https://arxiv.org/pdf/2103.14030 | |
Args: | |
img_size (int | tuple(int)): Input image size. Default 224 | |
patch_size (int | tuple(int)): Patch size. Default: 4 | |
in_chans (int): Number of input image channels. Default: 3 | |
num_classes (int): Number of classes for classification head. Default: 1000 | |
embed_dim (int): Patch embedding dimension. Default: 96 | |
depths (tuple(int)): Depth of each Swin Transformer layer. | |
num_heads (tuple(int)): Number of attention heads in different layers. | |
window_size (int): Window size. Default: 7 | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None | |
drop_rate (float): Dropout rate. Default: 0 | |
attn_drop_rate (float): Attention dropout rate. Default: 0 | |
drop_path_rate (float): Stochastic depth rate. Default: 0.1 | |
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. | |
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False | |
patch_norm (bool): If True, add normalization after patch embedding. Default: True | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False | |
""" | |
def __init__(self, img_size=112, patch_size=2, in_chans=3, num_classes=1000, | |
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], | |
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, | |
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, | |
norm_layer=nn.LayerNorm, ape=False, patch_norm=True, | |
use_checkpoint=False, **kwargs): | |
super().__init__() | |
self.num_classes = num_classes | |
self.num_layers = len(depths) | |
self.embed_dim = embed_dim | |
self.ape = ape | |
self.patch_norm = patch_norm | |
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) | |
self.mlp_ratio = mlp_ratio | |
# split image into non-overlapping patches | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, | |
norm_layer=norm_layer if self.patch_norm else None) | |
num_patches = self.patch_embed.num_patches | |
patches_resolution = self.patch_embed.patches_resolution | |
self.patches_resolution = patches_resolution | |
# absolute position embedding | |
if self.ape: | |
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) | |
trunc_normal_(self.absolute_pos_embed, std=.02) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
# stochastic depth | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule | |
# build layers | |
self.layers = nn.ModuleList() | |
for i_layer in range(self.num_layers): | |
layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer), | |
input_resolution=(patches_resolution[0] // (2 ** i_layer), | |
patches_resolution[1] // (2 ** i_layer)), | |
depth=depths[i_layer], | |
num_heads=num_heads[i_layer], | |
window_size=window_size, | |
mlp_ratio=self.mlp_ratio, | |
qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, | |
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], | |
norm_layer=norm_layer, | |
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, | |
use_checkpoint=use_checkpoint) | |
self.layers.append(layer) | |
self.norm = norm_layer(self.num_features) | |
self.avgpool = nn.AdaptiveAvgPool1d(1) | |
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
self.feature = nn.Sequential( | |
nn.Linear(in_features=self.num_features, out_features=self.num_features, bias=False), | |
nn.BatchNorm1d(num_features=self.num_features, eps=2e-5), | |
nn.Linear(in_features=self.num_features, out_features=num_classes, bias=False), | |
nn.BatchNorm1d(num_features=num_classes, eps=2e-5) | |
) | |
self.feature_resolution = (patches_resolution[0] // (2 ** (self.num_layers-1)), patches_resolution[1] // (2 ** (self.num_layers-1))) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
return {'absolute_pos_embed'} | |
def no_weight_decay_keywords(self): | |
return {'relative_position_bias_table'} | |
def forward_features(self, x): | |
patches_resolution = self.patch_embed.patches_resolution | |
x = self.patch_embed(x) | |
if self.ape: | |
x = x + self.absolute_pos_embed | |
x = self.pos_drop(x) | |
local_features = [] | |
i = 0 | |
for layer in self.layers: | |
i += 1 | |
x = layer(x) | |
if not i == self.num_layers: | |
H = patches_resolution[0] // (2 ** i) | |
W = patches_resolution[1] // (2 ** i) | |
B, L, C = x.shape | |
temp = x.transpose(1, 2).reshape(B, C, H, W) | |
win_h = H // self.feature_resolution[0] | |
win_w = W // self.feature_resolution[1] | |
if not (win_h == 1 and win_w == 1): | |
temp = F.avg_pool2d(temp, kernel_size=(win_h, win_w)) | |
local_features.append(temp) | |
local_features = torch.cat(local_features, dim=1) | |
# B, C, H, W | |
global_features = x | |
B, L, C = global_features.shape | |
global_features = global_features.transpose(1, 2).reshape(B, C, self.feature_resolution[0], self.feature_resolution[1]) | |
# B, C, H, W | |
x = self.norm(x) # B L C | |
x = self.avgpool(x.transpose(1, 2)) # B C 1 | |
x = torch.flatten(x, 1) | |
return local_features, global_features, x | |
def forward(self, x): | |
local_features, global_features, x = self.forward_features(x) | |
x = self.feature(x) | |
return local_features, global_features, x | |
def flops(self): | |
flops = 0 | |
flops += self.patch_embed.flops() | |
for i, layer in enumerate(self.layers): | |
flops += layer.flops() | |
flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers) | |
flops += self.num_features * self.num_classes | |
return flops | |
class BasicConv(nn.Module): | |
def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=True, bias=False): | |
super(BasicConv, self).__init__() | |
self.out_channels = out_planes | |
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) | |
self.bn = nn.BatchNorm2d(out_planes,eps=1e-5, momentum=0.01, affine=True) if bn else None | |
self.relu = nn.ReLU() if relu else None | |
def forward(self, x): | |
x = self.conv(x) | |
if self.bn is not None: | |
x = self.bn(x) | |
if self.relu is not None: | |
x = self.relu(x) | |
return x | |
class Flatten(nn.Module): | |
def forward(self, x): | |
return x.view(x.size(0), -1) | |
class ChannelGate(nn.Module): | |
def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max']): | |
super(ChannelGate, self).__init__() | |
self.gate_channels = gate_channels | |
self.mlp = nn.Sequential( | |
Flatten(), | |
nn.Linear(gate_channels, gate_channels // reduction_ratio), | |
nn.ReLU(), | |
nn.Linear(gate_channels // reduction_ratio, gate_channels) | |
) | |
self.pool_types = pool_types | |
def forward(self, x): | |
channel_att_sum = None | |
for pool_type in self.pool_types: | |
if pool_type=='avg': | |
avg_pool = F.avg_pool2d( x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3))) | |
channel_att_raw = self.mlp( avg_pool ) | |
elif pool_type=='max': | |
max_pool = F.max_pool2d( x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3))) | |
channel_att_raw = self.mlp( max_pool ) | |
elif pool_type=='lp': | |
lp_pool = F.lp_pool2d( x, 2, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3))) | |
channel_att_raw = self.mlp( lp_pool ) | |
elif pool_type=='lse': | |
# LSE pool only | |
lse_pool = logsumexp_2d(x) | |
channel_att_raw = self.mlp( lse_pool ) | |
if channel_att_sum is None: | |
channel_att_sum = channel_att_raw | |
else: | |
channel_att_sum = channel_att_sum + channel_att_raw | |
scale = F.sigmoid( channel_att_sum ).unsqueeze(2).unsqueeze(3).expand_as(x) | |
return x * scale | |
def logsumexp_2d(tensor): | |
tensor_flatten = tensor.view(tensor.size(0), tensor.size(1), -1) | |
s, _ = torch.max(tensor_flatten, dim=2, keepdim=True) | |
outputs = s + (tensor_flatten - s).exp().sum(dim=2, keepdim=True).log() | |
return outputs | |
class ChannelPool(nn.Module): | |
def forward(self, x): | |
return torch.cat( (torch.max(x,1)[0].unsqueeze(1), torch.mean(x,1).unsqueeze(1)), dim=1 ) | |
class SpatialGate(nn.Module): | |
def __init__(self): | |
super(SpatialGate, self).__init__() | |
kernel_size = 7 | |
self.compress = ChannelPool() | |
self.spatial = BasicConv(2, 1, kernel_size, stride=1, padding=(kernel_size-1) // 2, relu=False) | |
def forward(self, x): | |
x_compress = self.compress(x) | |
x_out = self.spatial(x_compress) | |
scale = F.sigmoid(x_out) # broadcasting | |
return x * scale | |
class CBAM(nn.Module): | |
def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max'], no_spatial=False): | |
super(CBAM, self).__init__() | |
self.ChannelGate = ChannelGate(gate_channels, reduction_ratio, pool_types) | |
self.no_spatial=no_spatial | |
if not no_spatial: | |
self.SpatialGate = SpatialGate() | |
def forward(self, x): | |
x_out = self.ChannelGate(x) | |
if not self.no_spatial: | |
x_out = self.SpatialGate(x_out) | |
return x_out | |
class ConvLayer(torch.nn.Module): | |
def __init__(self, in_chans=768, out_chans=512, conv_mode="normal", kernel_size=3): | |
super().__init__() | |
self.conv_mode = conv_mode | |
if conv_mode == "normal": | |
self.conv = nn.Conv2d(in_chans, out_chans, kernel_size, stride=1, padding=(kernel_size-1)//2, bias=False) | |
elif conv_mode == "split": | |
self.convs = nn.ModuleList() | |
for j in range(len(in_chans)): | |
conv = nn.Conv2d(in_chans[j], out_chans[j], kernel_size, stride=1, padding=(kernel_size-1)//2, bias=False) | |
self.convs.append(conv) | |
self.cut = [0 for i in range(len(in_chans)+1)] | |
self.cut[0] = 0 | |
for i in range(1, len(in_chans)+1): | |
self.cut[i] = self.cut[i - 1] + in_chans[i-1] | |
def forward(self, x): | |
if self.conv_mode == "normal": | |
x = self.conv(x) | |
elif self.conv_mode == "split": | |
outputs = [] | |
for j in range(len(self.cut)-1): | |
input_map = x[:, self.cut[j]:self.cut[j+1]] | |
#print(input_map.shape) | |
output_map = self.convs[j](input_map) | |
outputs.append(output_map) | |
#print(output_map.shape) | |
x = torch.cat(outputs, dim=1) | |
return x | |
class LANet(torch.nn.Module): | |
def __init__(self, in_chans=512, reduction_ratio=2.0): | |
super().__init__() | |
self.in_chans = in_chans | |
self.mid_chans = int(self.in_chans/reduction_ratio) | |
self.conv1 = nn.Conv2d(self.in_chans, self.mid_chans, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
self.conv2 = nn.Conv2d(self.mid_chans, 1, kernel_size=(1, 1), stride=(1, 1), bias=False) | |
def forward(self, x): | |
x = F.relu(self.conv1(x)) | |
x = torch.sigmoid(self.conv2(x)) | |
return x | |
def MAD(x, p=0.6): | |
B, C, W, H = x.shape | |
mask1 = torch.cat([torch.randperm(C).unsqueeze(dim=0) for j in range(B)], dim=0).cuda() | |
mask2 = torch.rand([B, C]).cuda() | |
ones = torch.ones([B, C], dtype=torch.float).cuda() | |
zeros = torch.zeros([B, C], dtype=torch.float).cuda() | |
mask = torch.where(mask1 == 0, zeros, ones) | |
mask = torch.where(mask2 < p, mask, ones) | |
x = x.permute(2, 3, 0, 1) | |
x = x.mul(mask) | |
x = x.permute(2, 3, 0, 1) | |
return x | |
class LANets(torch.nn.Module): | |
def __init__(self, branch_num=2, feature_dim=512, la_reduction_ratio=2.0, MAD=MAD): | |
super().__init__() | |
self.LANets = nn.ModuleList() | |
for i in range(branch_num): | |
self.LANets.append(LANet(in_chans=feature_dim, reduction_ratio=la_reduction_ratio)) | |
self.MAD = MAD | |
self.branch_num = branch_num | |
def forward(self, x): | |
B, C, W, H = x.shape | |
outputs = [] | |
for lanet in self.LANets: | |
output = lanet(x) | |
outputs.append(output) | |
LANets_output = torch.cat(outputs, dim=1) | |
if self.MAD and self.branch_num != 1: | |
LANets_output = self.MAD(LANets_output) | |
mask = torch.max(LANets_output, dim=1).values.reshape(B, 1, W, H) | |
x = x.mul(mask) | |
return x | |
class FeatureAttentionNet(torch.nn.Module): | |
def __init__(self, in_chans=768, feature_dim=512, kernel_size=3, | |
conv_shared=False, conv_mode="normal", | |
channel_attention=None, spatial_attention=None, | |
pooling="max", la_branch_num=2): | |
super().__init__() | |
self.conv_shared = conv_shared | |
self.channel_attention = channel_attention | |
self.spatial_attention = spatial_attention | |
if not self.conv_shared: | |
if conv_mode == "normal": | |
self.conv = ConvLayer(in_chans=in_chans, out_chans=feature_dim, | |
conv_mode="normal", kernel_size=kernel_size) | |
elif conv_mode == "split" and in_chans == 2112: | |
self.conv = ConvLayer(in_chans=[192, 384, 768, 768], out_chans=[47, 93, 186, 186], | |
conv_mode="split", kernel_size=kernel_size) | |
if self.channel_attention == "CBAM": | |
self.channel_attention = ChannelGate(gate_channels=feature_dim) | |
if self.spatial_attention == "CBAM": | |
self.spatial_attention = SpatialGate() | |
elif self.spatial_attention == "LANet": | |
self.spatial_attention = LANets(branch_num=la_branch_num, feature_dim=feature_dim) | |
if pooling == "max": | |
self.pool = nn.AdaptiveMaxPool2d((1, 1)) | |
elif pooling == "avg": | |
self.pool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.act = nn.ReLU(inplace=True) | |
self.norm = nn.BatchNorm1d(num_features=feature_dim, eps=2e-5) | |
def forward(self, x): | |
if not self.conv_shared: | |
x = self.conv(x) | |
if self.channel_attention: | |
x = self.channel_attention(x) | |
if self.spatial_attention: | |
x = self.spatial_attention(x) | |
x = self.act(x) | |
B, C, _, __ = x.shape | |
x = self.pool(x).reshape(B, C) | |
x = self.norm(x) | |
return x | |
class FeatureAttentionModule(torch.nn.Module): | |
def __init__(self, branch_num=11, in_chans=2112, feature_dim=512, conv_shared=False, conv_mode="split", kernel_size=3, | |
channel_attention="CBAM", spatial_attention=None, la_num_list=[2 for j in range(11)], pooling="max"): | |
super().__init__() | |
self.conv_shared = conv_shared | |
if self.conv_shared: | |
if conv_mode == "normal": | |
self.conv = ConvLayer(in_chans=in_chans, out_chans=feature_dim, | |
conv_mode="normal", kernel_size=kernel_size) | |
elif conv_mode == "split" and in_chans == 2112: | |
self.conv = ConvLayer(in_chans=[192, 384, 768, 768], out_chans=[47, 93, 186, 186], | |
conv_mode="split", kernel_size=kernel_size) | |
self.nets = nn.ModuleList() | |
for i in range(branch_num): | |
net = FeatureAttentionNet(in_chans=in_chans, feature_dim=feature_dim, | |
conv_shared=conv_shared, conv_mode=conv_mode, kernel_size=kernel_size, | |
channel_attention=channel_attention, spatial_attention=spatial_attention, | |
la_branch_num=la_num_list[i], pooling=pooling) | |
self.nets.append(net) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def forward(self, x): | |
if self.conv_shared: | |
x = self.conv(x) | |
outputs = [] | |
for net in self.nets: | |
output = net(x).unsqueeze(dim=0) | |
outputs.append(output) | |
outputs = torch.cat(outputs, dim=0) | |
return outputs | |
class TaskSpecificSubnet(torch.nn.Module): | |
def __init__(self, feature_dim=512, drop_rate=0.5): | |
super().__init__() | |
self.feature = nn.Sequential( | |
nn.Linear(feature_dim, feature_dim), | |
nn.ReLU(True), | |
nn.Dropout(drop_rate), | |
nn.Linear(feature_dim, feature_dim), | |
nn.ReLU(True), | |
nn.Dropout(drop_rate),) | |
def forward(self, x): | |
return self.feature(x) | |
class TaskSpecificSubnets(torch.nn.Module): | |
def __init__(self, branch_num=11): | |
super().__init__() | |
self.branch_num = branch_num | |
self.nets = nn.ModuleList() | |
for i in range(self.branch_num): | |
net = TaskSpecificSubnet(drop_rate=0.5) | |
self.nets.append(net) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def forward(self, x): | |
outputs = [] | |
for i in range(self.branch_num): | |
net = self.nets[i] | |
output = net(x[i]).unsqueeze(dim=0) | |
outputs.append(output) | |
outputs = torch.cat(outputs, dim=0) | |
return outputs | |
class OutputModule(torch.nn.Module): | |
def __init__(self, feature_dim=512, output_type="Dict"): | |
super().__init__() | |
self.output_sizes = [[2], | |
[1, 2], | |
[7, 2], | |
[2 for j in range(6)], | |
[2 for j in range(10)], | |
[2 for j in range(5)], | |
[2, 2], | |
[2 for j in range(4)], | |
[2 for j in range(6)], | |
[2, 2], | |
[2, 2]] | |
self.output_fcs = nn.ModuleList() | |
for i in range(0, len(self.output_sizes)): | |
for j in range(len(self.output_sizes[i])): | |
output_fc = nn.Linear(feature_dim, self.output_sizes[i][j]) | |
self.output_fcs.append(output_fc) | |
self.task_names = [ | |
'Age', 'Attractive', 'Blurry', 'Chubby', 'Heavy Makeup', 'Gender', 'Oval Face', 'Pale Skin', | |
'Smiling', 'Young', | |
'Bald', 'Bangs', 'Black Hair', 'Blond Hair', 'Brown Hair', 'Gray Hair', 'Receding Hairline', | |
'Straight Hair', 'Wavy Hair', 'Wearing Hat', | |
'Arched Eyebrows', 'Bags Under Eyes', 'Bushy Eyebrows', 'Eyeglasses', 'Narrow Eyes', 'Big Nose', | |
'Pointy Nose', 'High Cheekbones', 'Rosy Cheeks', 'Wearing Earrings', | |
'Sideburns', r"Five O'Clock Shadow", 'Big Lips', 'Mouth Slightly Open', 'Mustache', | |
'Wearing Lipstick', 'No Beard', 'Double Chin', 'Goatee', 'Wearing Necklace', | |
'Wearing Necktie', 'Expression', 'Recognition'] # Total:43 | |
self.output_type = output_type | |
self.apply(self._init_weights) | |
def set_output_type(self, output_type): | |
self.output_type = output_type | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def forward(self, x, embedding): | |
outputs = [] | |
k = 0 | |
for i in range(0, len(self.output_sizes)): | |
for j in range(len(self.output_sizes[i])): | |
output_fc = self.output_fcs[k] | |
output = output_fc(x[i]) | |
outputs.append(output) | |
k += 1 | |
[gender, | |
age, young, | |
expression, smiling, | |
attractive, blurry, chubby, heavy_makeup, oval_face, pale_skin, | |
bald, bangs, black_hair, blond_hair, brown_hair, gray_hair, receding_hairline, straight_hair, wavy_hair, | |
wearing_hat, | |
arched_eyebrows, bags_under_eyes, bushy_eyebrows, eyeglasses, narrow_eyes, | |
big_nose, pointy_nose, | |
high_cheekbones, rosy_cheeks, wearing_earrings, sideburns, | |
five_o_clock_shadow, big_lips, mouth_slightly_open, mustache, wearing_lipstick, no_beard, | |
double_chin, goatee, | |
wearing_necklace, wearing_necktie] = outputs | |
outputs = [age, attractive, blurry, chubby, heavy_makeup, gender, oval_face, pale_skin, smiling, young, | |
bald, bangs, black_hair, blond_hair, brown_hair, gray_hair, receding_hairline, | |
straight_hair, wavy_hair, wearing_hat, | |
arched_eyebrows, bags_under_eyes, bushy_eyebrows, eyeglasses, narrow_eyes, big_nose, | |
pointy_nose, high_cheekbones, rosy_cheeks, wearing_earrings, | |
sideburns, five_o_clock_shadow, big_lips, mouth_slightly_open, mustache, | |
wearing_lipstick, no_beard, double_chin, goatee, wearing_necklace, | |
wearing_necktie, expression] # Total:42 | |
outputs.append(embedding) | |
result = dict() | |
for j in range(43): | |
result[self.task_names[j]] = outputs[j] | |
if self.output_type == "Dict": | |
return result | |
elif self.output_type == "List": | |
return outputs | |
elif self.output_type == "Attribute": | |
return outputs[1: 41] | |
else: | |
return result[self.output_type] | |
class ModelBox(torch.nn.Module): | |
def __init__(self, backbone=None, fam=None, tss=None, om=None, | |
feature="global", output_type="Dict"): | |
super().__init__() | |
self.backbone = backbone | |
self.fam = fam | |
self.tss = tss | |
self.om = om | |
self.output_type = output_type | |
if self.om: | |
self.om.set_output_type(self.output_type) | |
self.feature = feature | |
def set_output_type(self, output_type): | |
self.output_type = output_type | |
if self.om: | |
self.om.set_output_type(self.output_type) | |
def forward(self, x): | |
local_features, global_features, embedding = self.backbone(x) | |
if self.feature == "all": | |
x = torch.cat([local_features, global_features], dim=1) | |
elif self.feature == "global": | |
x = global_features | |
elif self.feature == "local": | |
x = local_features | |
x = self.fam(x) | |
x = self.tss(x) | |
x = self.om(x, embedding) | |
return x | |
def build_model(cfg): | |
backbone = SwinTransformer(num_classes=cfg.embedding_size) | |
fam = FeatureAttentionModule( | |
in_chans=cfg.fam_in_chans, kernel_size=cfg.fam_kernel_size, | |
conv_shared=cfg.fam_conv_shared, conv_mode=cfg.fam_conv_mode, | |
channel_attention=cfg.fam_channel_attention, spatial_attention=cfg.fam_spatial_attention, | |
pooling=cfg.fam_pooling, la_num_list=cfg.fam_la_num_list) | |
tss = TaskSpecificSubnets() | |
om = OutputModule() | |
model = ModelBox(backbone=backbone, fam=fam, tss=tss, om=om, feature=cfg.fam_feature) | |
return model | |
class SwinFaceCfg: | |
network = "swin_t" | |
fam_kernel_size=3 | |
fam_in_chans=2112 | |
fam_conv_shared=False | |
fam_conv_mode="split" | |
fam_channel_attention="CBAM" | |
fam_spatial_attention=None | |
fam_pooling="max" | |
fam_la_num_list=[2 for j in range(11)] | |
fam_feature="all" | |
fam = "3x3_2112_F_s_C_N_max" | |
embedding_size = 512 | |
def load_model(): | |
cfg = SwinFaceCfg() | |
weight = os.getcwd() + "/weights.pt" | |
if not os.path.isfile(weight): | |
gdown.download("https://drive.google.com/uc?export=download&id=1fi4IuuFV8NjnWm-CufdrhMKrkjxhSmjx", weight) | |
model = build_model(cfg) | |
dict_checkpoint = torch.load(weight, map_location=torch.device('cpu')) | |
model.backbone.load_state_dict(dict_checkpoint["state_dict_backbone"]) | |
model.fam.load_state_dict(dict_checkpoint["state_dict_fam"]) | |
model.tss.load_state_dict(dict_checkpoint["state_dict_tss"]) | |
model.om.load_state_dict(dict_checkpoint["state_dict_om"]) | |
model.eval() | |
return model | |
def get_embeddings(model, images): | |
embeddings = [] | |
for img in images: | |
img = cv2.resize(np.array(img), (112, 112)) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = np.transpose(img, (2, 0, 1)) | |
img = torch.from_numpy(img).unsqueeze(0).float() | |
img.div_(255).sub_(0.5).div_(0.5) | |
with torch.inference_mode(): | |
output = model(img) | |
embeddings.append(output["Recognition"][0].numpy()) | |
return embeddings |