Spaces:
Sleeping
Sleeping
Add Better Images and SwinFace
Browse files- app.py +17 -9
- helpers.py +22 -64
- images/220001002.jpg +2 -2
- images/220001015.png +2 -2
- images/220001018.jpeg +2 -2
- images/220001023.jpg +0 -0
- images/220001037.jpg +0 -0
- images/220001042.jpg +2 -2
- images/220001048.jpg +2 -2
- images/220001050.jpg +2 -2
- images/220001054.jpg +0 -0
- images/220001055.png +2 -2
- images/220001060.jpg +2 -2
- images/220001064.jpg +2 -2
- images/220001065.png +2 -2
- images/220001068.jpg +2 -2
- images/Akshit.jpeg +0 -0
- images/Gourav.jpeg +0 -0
- images/Gourav1.jpeg +0 -0
- images/Jayant.jpeg +0 -0
- images/Priyanshu.jpeg +0 -0
- images/Priyanshu1.jpeg +0 -0
- images/Sairaj.jpeg +0 -0
- images/Samip.jpeg +0 -0
- images/Sekhar.jpeg +0 -0
- images/Vikas.jpeg +0 -0
- images/Yatharth.jpeg +0 -0
- requirements.txt +4 -1
- swin.py +1164 -0
app.py
CHANGED
@@ -1,7 +1,8 @@
|
|
|
|
1 |
import faiss
|
2 |
-
from helpers import *
|
3 |
import gradio as gr
|
4 |
-
import
|
|
|
5 |
detector = load_detector()
|
6 |
model = load_model()
|
7 |
|
@@ -18,14 +19,20 @@ for r, _, f in os.walk(os.getcwd() + "/images"):
|
|
18 |
|
19 |
source_faces = []
|
20 |
for img in source_imgs:
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
source_embeddings = get_embeddings(model, source_faces)
|
26 |
|
27 |
def find_names(image):
|
28 |
-
imgs = extract_faces(detector, image)
|
|
|
|
|
|
|
|
|
29 |
embeds = get_embeddings(model, imgs)
|
30 |
d = np.zeros((len(source_embeddings), len(embeds)))
|
31 |
for i, s in enumerate(source_embeddings):
|
@@ -35,12 +42,13 @@ def find_names(image):
|
|
35 |
names = []
|
36 |
for i in ids:
|
37 |
names.append(source_imgs[i].split("/")[-1].split(".")[0])
|
38 |
-
|
|
|
39 |
|
40 |
demo = gr.Interface(
|
41 |
find_names,
|
42 |
gr.Image(type="filepath"),
|
43 |
-
"text",
|
44 |
examples = [
|
45 |
os.path.join(os.path.dirname(__file__), "examples/group1.jpg"),
|
46 |
os.path.join(os.path.dirname(__file__), "examples/group2.jpg")
|
|
|
1 |
+
import os
|
2 |
import faiss
|
|
|
3 |
import gradio as gr
|
4 |
+
from helpers import *
|
5 |
+
|
6 |
detector = load_detector()
|
7 |
model = load_model()
|
8 |
|
|
|
19 |
|
20 |
source_faces = []
|
21 |
for img in source_imgs:
|
22 |
+
try:
|
23 |
+
faces, id = extract_faces(detector, img)
|
24 |
+
source_faces.append(faces[id])
|
25 |
+
except Exception as e:
|
26 |
+
print(f"Skipping {img}, {e}")
|
27 |
+
|
28 |
source_embeddings = get_embeddings(model, source_faces)
|
29 |
|
30 |
def find_names(image):
|
31 |
+
imgs, _ = extract_faces(detector, image)
|
32 |
+
for i, face in enumerate(imgs):
|
33 |
+
if(face.size[0] * face.size[1] < 1000):
|
34 |
+
del imgs[i]
|
35 |
+
|
36 |
embeds = get_embeddings(model, imgs)
|
37 |
d = np.zeros((len(source_embeddings), len(embeds)))
|
38 |
for i, s in enumerate(source_embeddings):
|
|
|
42 |
names = []
|
43 |
for i in ids:
|
44 |
names.append(source_imgs[i].split("/")[-1].split(".")[0])
|
45 |
+
recognition(imgs, ids, names, source_faces)
|
46 |
+
return ",".join(names), "Recognition.jpg"
|
47 |
|
48 |
demo = gr.Interface(
|
49 |
find_names,
|
50 |
gr.Image(type="filepath"),
|
51 |
+
["text", gr.Image(type = "filepath")],
|
52 |
examples = [
|
53 |
os.path.join(os.path.dirname(__file__), "examples/group1.jpg"),
|
54 |
os.path.join(os.path.dirname(__file__), "examples/group2.jpg")
|
helpers.py
CHANGED
@@ -1,20 +1,8 @@
|
|
1 |
from ultralyticsplus import YOLO
|
2 |
from PIL import Image
|
3 |
import numpy as np
|
4 |
-
from
|
5 |
-
|
6 |
-
Convolution2D,
|
7 |
-
LocallyConnected2D,
|
8 |
-
MaxPooling2D,
|
9 |
-
Flatten,
|
10 |
-
Dense,
|
11 |
-
Dropout,
|
12 |
-
)
|
13 |
-
import os
|
14 |
-
import zipfile
|
15 |
-
import gdown
|
16 |
-
import tensorflow as tf
|
17 |
-
|
18 |
|
19 |
def load_detector():
|
20 |
# load model
|
@@ -35,46 +23,7 @@ def extract_faces(model, image):
|
|
35 |
crops = []
|
36 |
for id in ids:
|
37 |
crops.append(Image.fromarray(np.array(img)[id[1] : id[3], id[0]: id[2]]))
|
38 |
-
return crops
|
39 |
-
|
40 |
-
def load_model(
|
41 |
-
url="https://github.com/swghosh/DeepFace/releases/download/weights-vggface2-2d-aligned/VGGFace2_DeepFace_weights_val-0.9034.h5.zip",
|
42 |
-
):
|
43 |
-
base_model = Sequential()
|
44 |
-
base_model.add(
|
45 |
-
Convolution2D(32, (11, 11), activation="relu", name="C1", input_shape=(152, 152, 3))
|
46 |
-
)
|
47 |
-
base_model.add(MaxPooling2D(pool_size=3, strides=2, padding="same", name="M2"))
|
48 |
-
base_model.add(Convolution2D(16, (9, 9), activation="relu", name="C3"))
|
49 |
-
base_model.add(LocallyConnected2D(16, (9, 9), activation="relu", name="L4"))
|
50 |
-
base_model.add(LocallyConnected2D(16, (7, 7), strides=2, activation="relu", name="L5"))
|
51 |
-
base_model.add(LocallyConnected2D(16, (5, 5), activation="relu", name="L6"))
|
52 |
-
base_model.add(Flatten(name="F0"))
|
53 |
-
base_model.add(Dense(4096, activation="relu", name="F7"))
|
54 |
-
base_model.add(Dropout(rate=0.5, name="D0"))
|
55 |
-
base_model.add(Dense(8631, activation="softmax", name="F8"))
|
56 |
-
|
57 |
-
# ---------------------------------
|
58 |
-
|
59 |
-
home = os.getcwd()
|
60 |
-
|
61 |
-
if os.path.isfile(home + "/VGGFace2_DeepFace_weights_val-0.9034.h5") != True:
|
62 |
-
print("VGGFace2_DeepFace_weights_val-0.9034.h5 will be downloaded...")
|
63 |
-
|
64 |
-
output = home + "/VGGFace2_DeepFace_weights_val-0.9034.h5.zip"
|
65 |
-
|
66 |
-
gdown.download(url, output, quiet=False)
|
67 |
-
|
68 |
-
# unzip VGGFace2_DeepFace_weights_val-0.9034.h5.zip
|
69 |
-
with zipfile.ZipFile(output, "r") as zip_ref:
|
70 |
-
zip_ref.extractall(home)
|
71 |
-
|
72 |
-
base_model.load_weights(home + "/VGGFace2_DeepFace_weights_val-0.9034.h5")
|
73 |
-
|
74 |
-
# drop F8 and D0. F7 is the representation layer.
|
75 |
-
deepface_model = Model(inputs=base_model.layers[0].input, outputs=base_model.layers[-3].output)
|
76 |
-
|
77 |
-
return deepface_model
|
78 |
|
79 |
def findCosineDistance(source_representation, test_representation):
|
80 |
a = np.matmul(np.transpose(source_representation), test_representation)
|
@@ -82,13 +31,22 @@ def findCosineDistance(source_representation, test_representation):
|
|
82 |
c = np.sum(np.multiply(test_representation, test_representation))
|
83 |
return 1 - (a / (np.sqrt(b) * np.sqrt(c)))
|
84 |
|
85 |
-
def
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from ultralyticsplus import YOLO
|
2 |
from PIL import Image
|
3 |
import numpy as np
|
4 |
+
from swin import load_model, get_embeddings
|
5 |
+
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
def load_detector():
|
8 |
# load model
|
|
|
23 |
crops = []
|
24 |
for id in ids:
|
25 |
crops.append(Image.fromarray(np.array(img)[id[1] : id[3], id[0]: id[2]]))
|
26 |
+
return crops, np.argmax(np.array(results[0].boxes.conf))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
def findCosineDistance(source_representation, test_representation):
|
29 |
a = np.matmul(np.transpose(source_representation), test_representation)
|
|
|
31 |
c = np.sum(np.multiply(test_representation, test_representation))
|
32 |
return 1 - (a / (np.sqrt(b) * np.sqrt(c)))
|
33 |
|
34 |
+
def recognition(imgs, ids, names, source_faces):
|
35 |
+
cols = 4
|
36 |
+
rows = int(np.ceil(len(imgs)/2))
|
37 |
+
img_count = 0
|
38 |
+
|
39 |
+
fig, axes = plt.subplots(nrows=rows, ncols=cols, figsize=(15,rows*3))
|
40 |
+
for i in range(rows):
|
41 |
+
for j in range(cols):
|
42 |
+
if img_count < len(imgs):
|
43 |
+
if(j%2):
|
44 |
+
axes[i, j].set_title(f"Confidence: {1 - d[ids[img_count]][img_count]: .2f}")
|
45 |
+
axes[i, j].imshow(imgs[img_count])
|
46 |
+
axes[i, j].set_axis_off()
|
47 |
+
img_count+=1
|
48 |
+
else:
|
49 |
+
axes[i, j].set_title(f"Roll No.:{source_imgs[ids[img_count]].split('/')[-1].split('.')[0]}")
|
50 |
+
axes[i, j].imshow(source_faces[ids[img_count]])
|
51 |
+
axes[i, j].set_axis_off()
|
52 |
+
plt.savefig("Recognition.jpg")
|
images/220001002.jpg
CHANGED
Git LFS Details
|
Git LFS Details
|
images/220001015.png
CHANGED
Git LFS Details
|
Git LFS Details
|
images/220001018.jpeg
CHANGED
Git LFS Details
|
Git LFS Details
|
images/220001023.jpg
CHANGED
images/220001037.jpg
CHANGED
images/220001042.jpg
CHANGED
Git LFS Details
|
Git LFS Details
|
images/220001048.jpg
CHANGED
Git LFS Details
|
Git LFS Details
|
images/220001050.jpg
CHANGED
Git LFS Details
|
Git LFS Details
|
images/220001054.jpg
CHANGED
images/220001055.png
CHANGED
Git LFS Details
|
Git LFS Details
|
images/220001060.jpg
CHANGED
Git LFS Details
|
Git LFS Details
|
images/220001064.jpg
CHANGED
Git LFS Details
|
Git LFS Details
|
images/220001065.png
CHANGED
Git LFS Details
|
Git LFS Details
|
images/220001068.jpg
CHANGED
Git LFS Details
|
Git LFS Details
|
images/Akshit.jpeg
DELETED
Binary file (7.71 kB)
|
|
images/Gourav.jpeg
DELETED
Binary file (22.7 kB)
|
|
images/Gourav1.jpeg
DELETED
Binary file (37.3 kB)
|
|
images/Jayant.jpeg
DELETED
Binary file (52.1 kB)
|
|
images/Priyanshu.jpeg
DELETED
Binary file (22.3 kB)
|
|
images/Priyanshu1.jpeg
DELETED
Binary file (24.5 kB)
|
|
images/Sairaj.jpeg
DELETED
Binary file (158 kB)
|
|
images/Samip.jpeg
DELETED
Binary file (30.7 kB)
|
|
images/Sekhar.jpeg
DELETED
Binary file (143 kB)
|
|
images/Vikas.jpeg
DELETED
Binary file (21.4 kB)
|
|
images/Yatharth.jpeg
DELETED
Binary file (28.7 kB)
|
|
requirements.txt
CHANGED
@@ -7,4 +7,7 @@ tensorflow
|
|
7 |
numpy
|
8 |
gdown
|
9 |
pillow
|
10 |
-
gradio
|
|
|
|
|
|
|
|
7 |
numpy
|
8 |
gdown
|
9 |
pillow
|
10 |
+
gradio
|
11 |
+
opencv-python
|
12 |
+
timm
|
13 |
+
torch
|
swin.py
ADDED
@@ -0,0 +1,1164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.utils.checkpoint as checkpoint
|
8 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
9 |
+
import os
|
10 |
+
import gdown
|
11 |
+
class Mlp(nn.Module):
|
12 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
13 |
+
super().__init__()
|
14 |
+
out_features = out_features or in_features
|
15 |
+
hidden_features = hidden_features or in_features
|
16 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
17 |
+
self.act = act_layer()
|
18 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
19 |
+
self.drop = nn.Dropout(drop)
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
x = self.fc1(x)
|
23 |
+
x = self.act(x)
|
24 |
+
x = self.drop(x)
|
25 |
+
x = self.fc2(x)
|
26 |
+
x = self.drop(x)
|
27 |
+
return x
|
28 |
+
|
29 |
+
|
30 |
+
def window_partition(x, window_size):
|
31 |
+
"""
|
32 |
+
Args:
|
33 |
+
x: (B, H, W, C)
|
34 |
+
window_size (int): window size
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
windows: (num_windows*B, window_size, window_size, C)
|
38 |
+
"""
|
39 |
+
B, H, W, C = x.shape
|
40 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
41 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
42 |
+
return windows
|
43 |
+
|
44 |
+
|
45 |
+
def window_reverse(windows, window_size, H, W):
|
46 |
+
"""
|
47 |
+
Args:
|
48 |
+
windows: (num_windows*B, window_size, window_size, C)
|
49 |
+
window_size (int): Window size
|
50 |
+
H (int): Height of image
|
51 |
+
W (int): Width of image
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
x: (B, H, W, C)
|
55 |
+
"""
|
56 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
57 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
58 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
59 |
+
return x
|
60 |
+
|
61 |
+
|
62 |
+
class WindowAttention(nn.Module):
|
63 |
+
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
64 |
+
It supports both of shifted and non-shifted window.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
dim (int): Number of input channels.
|
68 |
+
window_size (tuple[int]): The height and width of the window.
|
69 |
+
num_heads (int): Number of attention heads.
|
70 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
71 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
72 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
73 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
74 |
+
"""
|
75 |
+
|
76 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
77 |
+
|
78 |
+
super().__init__()
|
79 |
+
self.dim = dim
|
80 |
+
self.window_size = window_size # Wh, Ww
|
81 |
+
self.num_heads = num_heads
|
82 |
+
head_dim = dim // num_heads
|
83 |
+
self.scale = qk_scale or head_dim ** -0.5
|
84 |
+
|
85 |
+
# define a parameter table of relative position bias
|
86 |
+
self.relative_position_bias_table = nn.Parameter(
|
87 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
88 |
+
|
89 |
+
# get pair-wise relative position index for each token inside the window
|
90 |
+
coords_h = torch.arange(self.window_size[0])
|
91 |
+
coords_w = torch.arange(self.window_size[1])
|
92 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
93 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
94 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
95 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
96 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
97 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
98 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
99 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
100 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
101 |
+
|
102 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
103 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
104 |
+
self.proj = nn.Linear(dim, dim)
|
105 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
106 |
+
|
107 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
108 |
+
self.softmax = nn.Softmax(dim=-1)
|
109 |
+
|
110 |
+
def forward(self, x, mask=None):
|
111 |
+
"""
|
112 |
+
Args:
|
113 |
+
x: input features with shape of (num_windows*B, N, C)
|
114 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
115 |
+
"""
|
116 |
+
with torch.cuda.amp.autocast(True):
|
117 |
+
B_, N, C = x.shape
|
118 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
119 |
+
|
120 |
+
with torch.cuda.amp.autocast(False):
|
121 |
+
q, k, v = qkv[0].float(), qkv[1].float(), qkv[2].float() # make torchscript happy (cannot use tensor as tuple)
|
122 |
+
|
123 |
+
q = q * self.scale
|
124 |
+
attn = (q @ k.transpose(-2, -1))
|
125 |
+
|
126 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
127 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
128 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
129 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
130 |
+
|
131 |
+
if mask is not None:
|
132 |
+
nW = mask.shape[0]
|
133 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
134 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
135 |
+
attn = self.softmax(attn)
|
136 |
+
else:
|
137 |
+
attn = self.softmax(attn)
|
138 |
+
|
139 |
+
attn = self.attn_drop(attn)
|
140 |
+
|
141 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
142 |
+
|
143 |
+
with torch.cuda.amp.autocast(True):
|
144 |
+
x = self.proj(x)
|
145 |
+
x = self.proj_drop(x)
|
146 |
+
return x
|
147 |
+
|
148 |
+
def extra_repr(self) -> str:
|
149 |
+
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
150 |
+
|
151 |
+
def flops(self, N):
|
152 |
+
# calculate flops for 1 window with token length of N
|
153 |
+
flops = 0
|
154 |
+
# qkv = self.qkv(x)
|
155 |
+
flops += N * self.dim * 3 * self.dim
|
156 |
+
# attn = (q @ k.transpose(-2, -1))
|
157 |
+
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
158 |
+
# x = (attn @ v)
|
159 |
+
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
160 |
+
# x = self.proj(x)
|
161 |
+
flops += N * self.dim * self.dim
|
162 |
+
return flops
|
163 |
+
|
164 |
+
|
165 |
+
class SwinTransformerBlock(nn.Module):
|
166 |
+
r""" Swin Transformer Block.
|
167 |
+
|
168 |
+
Args:
|
169 |
+
dim (int): Number of input channels.
|
170 |
+
input_resolution (tuple[int]): Input resulotion.
|
171 |
+
num_heads (int): Number of attention heads.
|
172 |
+
window_size (int): Window size.
|
173 |
+
shift_size (int): Shift size for SW-MSA.
|
174 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
175 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
176 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
177 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
178 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
179 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
180 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
181 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
182 |
+
"""
|
183 |
+
|
184 |
+
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
|
185 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
186 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
187 |
+
super().__init__()
|
188 |
+
self.dim = dim
|
189 |
+
self.input_resolution = input_resolution
|
190 |
+
self.num_heads = num_heads
|
191 |
+
self.window_size = window_size
|
192 |
+
self.shift_size = shift_size
|
193 |
+
self.mlp_ratio = mlp_ratio
|
194 |
+
if min(self.input_resolution) <= self.window_size:
|
195 |
+
# if window size is larger than input resolution, we don't partition windows
|
196 |
+
self.shift_size = 0
|
197 |
+
self.window_size = min(self.input_resolution)
|
198 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
199 |
+
|
200 |
+
self.norm1 = norm_layer(dim)
|
201 |
+
self.attn = WindowAttention(
|
202 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
203 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
204 |
+
|
205 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
206 |
+
self.norm2 = norm_layer(dim)
|
207 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
208 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
209 |
+
|
210 |
+
if self.shift_size > 0:
|
211 |
+
# calculate attention mask for SW-MSA
|
212 |
+
H, W = self.input_resolution
|
213 |
+
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
214 |
+
h_slices = (slice(0, -self.window_size),
|
215 |
+
slice(-self.window_size, -self.shift_size),
|
216 |
+
slice(-self.shift_size, None))
|
217 |
+
w_slices = (slice(0, -self.window_size),
|
218 |
+
slice(-self.window_size, -self.shift_size),
|
219 |
+
slice(-self.shift_size, None))
|
220 |
+
cnt = 0
|
221 |
+
for h in h_slices:
|
222 |
+
for w in w_slices:
|
223 |
+
img_mask[:, h, w, :] = cnt
|
224 |
+
cnt += 1
|
225 |
+
|
226 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
227 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
228 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
229 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
230 |
+
else:
|
231 |
+
attn_mask = None
|
232 |
+
|
233 |
+
self.register_buffer("attn_mask", attn_mask)
|
234 |
+
|
235 |
+
def forward(self, x):
|
236 |
+
H, W = self.input_resolution
|
237 |
+
B, L, C = x.shape
|
238 |
+
assert L == H * W, "input feature has wrong size"
|
239 |
+
|
240 |
+
shortcut = x
|
241 |
+
x = self.norm1(x)
|
242 |
+
x = x.view(B, H, W, C)
|
243 |
+
|
244 |
+
# cyclic shift
|
245 |
+
if self.shift_size > 0:
|
246 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
247 |
+
else:
|
248 |
+
shifted_x = x
|
249 |
+
|
250 |
+
# partition windows
|
251 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
252 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
253 |
+
|
254 |
+
# W-MSA/SW-MSA
|
255 |
+
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
|
256 |
+
|
257 |
+
# merge windows
|
258 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
259 |
+
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
|
260 |
+
|
261 |
+
# reverse cyclic shift
|
262 |
+
if self.shift_size > 0:
|
263 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
264 |
+
else:
|
265 |
+
x = shifted_x
|
266 |
+
x = x.view(B, H * W, C)
|
267 |
+
|
268 |
+
# FFN
|
269 |
+
x = shortcut + self.drop_path(x)
|
270 |
+
with torch.cuda.amp.autocast(True):
|
271 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
272 |
+
|
273 |
+
return x
|
274 |
+
|
275 |
+
def extra_repr(self) -> str:
|
276 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
277 |
+
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
|
278 |
+
|
279 |
+
def flops(self):
|
280 |
+
flops = 0
|
281 |
+
H, W = self.input_resolution
|
282 |
+
# norm1
|
283 |
+
flops += self.dim * H * W
|
284 |
+
# W-MSA/SW-MSA
|
285 |
+
nW = H * W / self.window_size / self.window_size
|
286 |
+
flops += nW * self.attn.flops(self.window_size * self.window_size)
|
287 |
+
# mlp
|
288 |
+
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
|
289 |
+
# norm2
|
290 |
+
flops += self.dim * H * W
|
291 |
+
return flops
|
292 |
+
|
293 |
+
|
294 |
+
class PatchMerging(nn.Module):
|
295 |
+
r""" Patch Merging Layer.
|
296 |
+
|
297 |
+
Args:
|
298 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
299 |
+
dim (int): Number of input channels.
|
300 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
301 |
+
"""
|
302 |
+
|
303 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
304 |
+
super().__init__()
|
305 |
+
self.input_resolution = input_resolution
|
306 |
+
self.dim = dim
|
307 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
308 |
+
self.norm = norm_layer(4 * dim)
|
309 |
+
|
310 |
+
def forward(self, x):
|
311 |
+
"""
|
312 |
+
x: B, H*W, C
|
313 |
+
"""
|
314 |
+
H, W = self.input_resolution
|
315 |
+
B, L, C = x.shape
|
316 |
+
assert L == H * W, "input feature has wrong size"
|
317 |
+
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
318 |
+
|
319 |
+
x = x.view(B, H, W, C)
|
320 |
+
|
321 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
322 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
323 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
324 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
325 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
326 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
327 |
+
|
328 |
+
x = self.norm(x)
|
329 |
+
x = self.reduction(x)
|
330 |
+
|
331 |
+
return x
|
332 |
+
|
333 |
+
def extra_repr(self) -> str:
|
334 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
335 |
+
|
336 |
+
def flops(self):
|
337 |
+
H, W = self.input_resolution
|
338 |
+
flops = H * W * self.dim
|
339 |
+
flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
|
340 |
+
return flops
|
341 |
+
|
342 |
+
|
343 |
+
class BasicLayer(nn.Module):
|
344 |
+
""" A basic Swin Transformer layer for one stage.
|
345 |
+
|
346 |
+
Args:
|
347 |
+
dim (int): Number of input channels.
|
348 |
+
input_resolution (tuple[int]): Input resolution.
|
349 |
+
depth (int): Number of blocks.
|
350 |
+
num_heads (int): Number of attention heads.
|
351 |
+
window_size (int): Local window size.
|
352 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
353 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
354 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
355 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
356 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
357 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
358 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
359 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
360 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
361 |
+
"""
|
362 |
+
|
363 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
364 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
|
365 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
|
366 |
+
|
367 |
+
super().__init__()
|
368 |
+
self.dim = dim
|
369 |
+
self.input_resolution = input_resolution
|
370 |
+
self.depth = depth
|
371 |
+
self.use_checkpoint = use_checkpoint
|
372 |
+
|
373 |
+
# build blocks
|
374 |
+
self.blocks = nn.ModuleList([
|
375 |
+
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
|
376 |
+
num_heads=num_heads, window_size=window_size,
|
377 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
378 |
+
mlp_ratio=mlp_ratio,
|
379 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
380 |
+
drop=drop, attn_drop=attn_drop,
|
381 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
382 |
+
norm_layer=norm_layer)
|
383 |
+
for i in range(depth)])
|
384 |
+
|
385 |
+
# patch merging layer
|
386 |
+
if downsample is not None:
|
387 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
388 |
+
else:
|
389 |
+
self.downsample = None
|
390 |
+
|
391 |
+
def forward(self, x):
|
392 |
+
for blk in self.blocks:
|
393 |
+
if self.use_checkpoint:
|
394 |
+
x = checkpoint.checkpoint(blk, x)
|
395 |
+
else:
|
396 |
+
x = blk(x)
|
397 |
+
if self.downsample is not None:
|
398 |
+
x = self.downsample(x)
|
399 |
+
return x
|
400 |
+
|
401 |
+
def extra_repr(self) -> str:
|
402 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
403 |
+
|
404 |
+
def flops(self):
|
405 |
+
flops = 0
|
406 |
+
for blk in self.blocks:
|
407 |
+
flops += blk.flops()
|
408 |
+
if self.downsample is not None:
|
409 |
+
flops += self.downsample.flops()
|
410 |
+
return flops
|
411 |
+
|
412 |
+
|
413 |
+
class PatchEmbed(nn.Module):
|
414 |
+
r""" Image to Patch Embedding
|
415 |
+
|
416 |
+
Args:
|
417 |
+
img_size (int): Image size. Default: 224.
|
418 |
+
patch_size (int): Patch token size. Default: 4.
|
419 |
+
in_chans (int): Number of input image channels. Default: 3.
|
420 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
421 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
422 |
+
"""
|
423 |
+
|
424 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
425 |
+
super().__init__()
|
426 |
+
img_size = to_2tuple(img_size)
|
427 |
+
patch_size = to_2tuple(patch_size)
|
428 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
429 |
+
self.img_size = img_size
|
430 |
+
self.patch_size = patch_size
|
431 |
+
self.patches_resolution = patches_resolution
|
432 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
433 |
+
|
434 |
+
self.in_chans = in_chans
|
435 |
+
self.embed_dim = embed_dim
|
436 |
+
|
437 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
438 |
+
if norm_layer is not None:
|
439 |
+
self.norm = norm_layer(embed_dim)
|
440 |
+
else:
|
441 |
+
self.norm = None
|
442 |
+
|
443 |
+
def forward(self, x):
|
444 |
+
B, C, H, W = x.shape
|
445 |
+
# FIXME look at relaxing size constraints
|
446 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
447 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
448 |
+
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
|
449 |
+
if self.norm is not None:
|
450 |
+
x = self.norm(x)
|
451 |
+
return x
|
452 |
+
|
453 |
+
def flops(self):
|
454 |
+
Ho, Wo = self.patches_resolution
|
455 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
456 |
+
if self.norm is not None:
|
457 |
+
flops += Ho * Wo * self.embed_dim
|
458 |
+
return flops
|
459 |
+
|
460 |
+
|
461 |
+
class SwinTransformer(nn.Module):
|
462 |
+
r""" Swin Transformer
|
463 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
464 |
+
https://arxiv.org/pdf/2103.14030
|
465 |
+
|
466 |
+
Args:
|
467 |
+
img_size (int | tuple(int)): Input image size. Default 224
|
468 |
+
patch_size (int | tuple(int)): Patch size. Default: 4
|
469 |
+
in_chans (int): Number of input image channels. Default: 3
|
470 |
+
num_classes (int): Number of classes for classification head. Default: 1000
|
471 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
472 |
+
depths (tuple(int)): Depth of each Swin Transformer layer.
|
473 |
+
num_heads (tuple(int)): Number of attention heads in different layers.
|
474 |
+
window_size (int): Window size. Default: 7
|
475 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
476 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
477 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
478 |
+
drop_rate (float): Dropout rate. Default: 0
|
479 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
480 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
481 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
482 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
483 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
484 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
485 |
+
"""
|
486 |
+
|
487 |
+
def __init__(self, img_size=112, patch_size=2, in_chans=3, num_classes=1000,
|
488 |
+
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
|
489 |
+
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
490 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
491 |
+
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
|
492 |
+
use_checkpoint=False, **kwargs):
|
493 |
+
super().__init__()
|
494 |
+
|
495 |
+
self.num_classes = num_classes
|
496 |
+
self.num_layers = len(depths)
|
497 |
+
self.embed_dim = embed_dim
|
498 |
+
self.ape = ape
|
499 |
+
self.patch_norm = patch_norm
|
500 |
+
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
|
501 |
+
self.mlp_ratio = mlp_ratio
|
502 |
+
|
503 |
+
# split image into non-overlapping patches
|
504 |
+
self.patch_embed = PatchEmbed(
|
505 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
|
506 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
507 |
+
num_patches = self.patch_embed.num_patches
|
508 |
+
patches_resolution = self.patch_embed.patches_resolution
|
509 |
+
self.patches_resolution = patches_resolution
|
510 |
+
|
511 |
+
# absolute position embedding
|
512 |
+
if self.ape:
|
513 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
514 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
515 |
+
|
516 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
517 |
+
|
518 |
+
# stochastic depth
|
519 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
520 |
+
|
521 |
+
# build layers
|
522 |
+
self.layers = nn.ModuleList()
|
523 |
+
for i_layer in range(self.num_layers):
|
524 |
+
layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
|
525 |
+
input_resolution=(patches_resolution[0] // (2 ** i_layer),
|
526 |
+
patches_resolution[1] // (2 ** i_layer)),
|
527 |
+
depth=depths[i_layer],
|
528 |
+
num_heads=num_heads[i_layer],
|
529 |
+
window_size=window_size,
|
530 |
+
mlp_ratio=self.mlp_ratio,
|
531 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
532 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
533 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
534 |
+
norm_layer=norm_layer,
|
535 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
536 |
+
use_checkpoint=use_checkpoint)
|
537 |
+
self.layers.append(layer)
|
538 |
+
|
539 |
+
self.norm = norm_layer(self.num_features)
|
540 |
+
self.avgpool = nn.AdaptiveAvgPool1d(1)
|
541 |
+
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
542 |
+
|
543 |
+
self.feature = nn.Sequential(
|
544 |
+
nn.Linear(in_features=self.num_features, out_features=self.num_features, bias=False),
|
545 |
+
nn.BatchNorm1d(num_features=self.num_features, eps=2e-5),
|
546 |
+
nn.Linear(in_features=self.num_features, out_features=num_classes, bias=False),
|
547 |
+
nn.BatchNorm1d(num_features=num_classes, eps=2e-5)
|
548 |
+
)
|
549 |
+
self.feature_resolution = (patches_resolution[0] // (2 ** (self.num_layers-1)), patches_resolution[1] // (2 ** (self.num_layers-1)))
|
550 |
+
|
551 |
+
|
552 |
+
self.apply(self._init_weights)
|
553 |
+
|
554 |
+
def _init_weights(self, m):
|
555 |
+
if isinstance(m, nn.Linear):
|
556 |
+
trunc_normal_(m.weight, std=.02)
|
557 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
558 |
+
nn.init.constant_(m.bias, 0)
|
559 |
+
elif isinstance(m, nn.LayerNorm):
|
560 |
+
nn.init.constant_(m.bias, 0)
|
561 |
+
nn.init.constant_(m.weight, 1.0)
|
562 |
+
|
563 |
+
@torch.jit.ignore
|
564 |
+
def no_weight_decay(self):
|
565 |
+
return {'absolute_pos_embed'}
|
566 |
+
|
567 |
+
@torch.jit.ignore
|
568 |
+
def no_weight_decay_keywords(self):
|
569 |
+
return {'relative_position_bias_table'}
|
570 |
+
|
571 |
+
def forward_features(self, x):
|
572 |
+
|
573 |
+
patches_resolution = self.patch_embed.patches_resolution
|
574 |
+
|
575 |
+
x = self.patch_embed(x)
|
576 |
+
if self.ape:
|
577 |
+
x = x + self.absolute_pos_embed
|
578 |
+
x = self.pos_drop(x)
|
579 |
+
|
580 |
+
local_features = []
|
581 |
+
i = 0
|
582 |
+
for layer in self.layers:
|
583 |
+
i += 1
|
584 |
+
x = layer(x)
|
585 |
+
|
586 |
+
if not i == self.num_layers:
|
587 |
+
|
588 |
+
H = patches_resolution[0] // (2 ** i)
|
589 |
+
W = patches_resolution[1] // (2 ** i)
|
590 |
+
|
591 |
+
B, L, C = x.shape
|
592 |
+
|
593 |
+
temp = x.transpose(1, 2).reshape(B, C, H, W)
|
594 |
+
win_h = H // self.feature_resolution[0]
|
595 |
+
win_w = W // self.feature_resolution[1]
|
596 |
+
if not (win_h == 1 and win_w == 1):
|
597 |
+
temp = F.avg_pool2d(temp, kernel_size=(win_h, win_w))
|
598 |
+
local_features.append(temp)
|
599 |
+
|
600 |
+
|
601 |
+
local_features = torch.cat(local_features, dim=1)
|
602 |
+
# B, C, H, W
|
603 |
+
global_features = x
|
604 |
+
B, L, C = global_features.shape
|
605 |
+
global_features = global_features.transpose(1, 2).reshape(B, C, self.feature_resolution[0], self.feature_resolution[1])
|
606 |
+
# B, C, H, W
|
607 |
+
|
608 |
+
x = self.norm(x) # B L C
|
609 |
+
x = self.avgpool(x.transpose(1, 2)) # B C 1
|
610 |
+
x = torch.flatten(x, 1)
|
611 |
+
return local_features, global_features, x
|
612 |
+
|
613 |
+
|
614 |
+
def forward(self, x):
|
615 |
+
local_features, global_features, x = self.forward_features(x)
|
616 |
+
x = self.feature(x)
|
617 |
+
return local_features, global_features, x
|
618 |
+
|
619 |
+
def flops(self):
|
620 |
+
flops = 0
|
621 |
+
flops += self.patch_embed.flops()
|
622 |
+
for i, layer in enumerate(self.layers):
|
623 |
+
flops += layer.flops()
|
624 |
+
flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
|
625 |
+
flops += self.num_features * self.num_classes
|
626 |
+
return flops
|
627 |
+
|
628 |
+
class BasicConv(nn.Module):
|
629 |
+
def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=True, bias=False):
|
630 |
+
super(BasicConv, self).__init__()
|
631 |
+
self.out_channels = out_planes
|
632 |
+
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias)
|
633 |
+
self.bn = nn.BatchNorm2d(out_planes,eps=1e-5, momentum=0.01, affine=True) if bn else None
|
634 |
+
self.relu = nn.ReLU() if relu else None
|
635 |
+
|
636 |
+
def forward(self, x):
|
637 |
+
x = self.conv(x)
|
638 |
+
if self.bn is not None:
|
639 |
+
x = self.bn(x)
|
640 |
+
if self.relu is not None:
|
641 |
+
x = self.relu(x)
|
642 |
+
return x
|
643 |
+
|
644 |
+
class Flatten(nn.Module):
|
645 |
+
def forward(self, x):
|
646 |
+
return x.view(x.size(0), -1)
|
647 |
+
|
648 |
+
class ChannelGate(nn.Module):
|
649 |
+
def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max']):
|
650 |
+
super(ChannelGate, self).__init__()
|
651 |
+
self.gate_channels = gate_channels
|
652 |
+
self.mlp = nn.Sequential(
|
653 |
+
Flatten(),
|
654 |
+
nn.Linear(gate_channels, gate_channels // reduction_ratio),
|
655 |
+
nn.ReLU(),
|
656 |
+
nn.Linear(gate_channels // reduction_ratio, gate_channels)
|
657 |
+
)
|
658 |
+
self.pool_types = pool_types
|
659 |
+
def forward(self, x):
|
660 |
+
channel_att_sum = None
|
661 |
+
for pool_type in self.pool_types:
|
662 |
+
if pool_type=='avg':
|
663 |
+
avg_pool = F.avg_pool2d( x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
|
664 |
+
channel_att_raw = self.mlp( avg_pool )
|
665 |
+
elif pool_type=='max':
|
666 |
+
max_pool = F.max_pool2d( x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
|
667 |
+
channel_att_raw = self.mlp( max_pool )
|
668 |
+
elif pool_type=='lp':
|
669 |
+
lp_pool = F.lp_pool2d( x, 2, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
|
670 |
+
channel_att_raw = self.mlp( lp_pool )
|
671 |
+
elif pool_type=='lse':
|
672 |
+
# LSE pool only
|
673 |
+
lse_pool = logsumexp_2d(x)
|
674 |
+
channel_att_raw = self.mlp( lse_pool )
|
675 |
+
|
676 |
+
if channel_att_sum is None:
|
677 |
+
channel_att_sum = channel_att_raw
|
678 |
+
else:
|
679 |
+
channel_att_sum = channel_att_sum + channel_att_raw
|
680 |
+
|
681 |
+
scale = F.sigmoid( channel_att_sum ).unsqueeze(2).unsqueeze(3).expand_as(x)
|
682 |
+
return x * scale
|
683 |
+
|
684 |
+
def logsumexp_2d(tensor):
|
685 |
+
tensor_flatten = tensor.view(tensor.size(0), tensor.size(1), -1)
|
686 |
+
s, _ = torch.max(tensor_flatten, dim=2, keepdim=True)
|
687 |
+
outputs = s + (tensor_flatten - s).exp().sum(dim=2, keepdim=True).log()
|
688 |
+
return outputs
|
689 |
+
|
690 |
+
class ChannelPool(nn.Module):
|
691 |
+
def forward(self, x):
|
692 |
+
return torch.cat( (torch.max(x,1)[0].unsqueeze(1), torch.mean(x,1).unsqueeze(1)), dim=1 )
|
693 |
+
|
694 |
+
class SpatialGate(nn.Module):
|
695 |
+
def __init__(self):
|
696 |
+
super(SpatialGate, self).__init__()
|
697 |
+
kernel_size = 7
|
698 |
+
self.compress = ChannelPool()
|
699 |
+
self.spatial = BasicConv(2, 1, kernel_size, stride=1, padding=(kernel_size-1) // 2, relu=False)
|
700 |
+
def forward(self, x):
|
701 |
+
x_compress = self.compress(x)
|
702 |
+
x_out = self.spatial(x_compress)
|
703 |
+
scale = F.sigmoid(x_out) # broadcasting
|
704 |
+
return x * scale
|
705 |
+
|
706 |
+
class CBAM(nn.Module):
|
707 |
+
def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max'], no_spatial=False):
|
708 |
+
super(CBAM, self).__init__()
|
709 |
+
self.ChannelGate = ChannelGate(gate_channels, reduction_ratio, pool_types)
|
710 |
+
self.no_spatial=no_spatial
|
711 |
+
if not no_spatial:
|
712 |
+
self.SpatialGate = SpatialGate()
|
713 |
+
def forward(self, x):
|
714 |
+
x_out = self.ChannelGate(x)
|
715 |
+
if not self.no_spatial:
|
716 |
+
x_out = self.SpatialGate(x_out)
|
717 |
+
return x_out
|
718 |
+
|
719 |
+
|
720 |
+
class ConvLayer(torch.nn.Module):
|
721 |
+
|
722 |
+
def __init__(self, in_chans=768, out_chans=512, conv_mode="normal", kernel_size=3):
|
723 |
+
super().__init__()
|
724 |
+
self.conv_mode = conv_mode
|
725 |
+
|
726 |
+
if conv_mode == "normal":
|
727 |
+
self.conv = nn.Conv2d(in_chans, out_chans, kernel_size, stride=1, padding=(kernel_size-1)//2, bias=False)
|
728 |
+
elif conv_mode == "split":
|
729 |
+
self.convs = nn.ModuleList()
|
730 |
+
for j in range(len(in_chans)):
|
731 |
+
conv = nn.Conv2d(in_chans[j], out_chans[j], kernel_size, stride=1, padding=(kernel_size-1)//2, bias=False)
|
732 |
+
self.convs.append(conv)
|
733 |
+
|
734 |
+
self.cut = [0 for i in range(len(in_chans)+1)]
|
735 |
+
self.cut[0] = 0
|
736 |
+
for i in range(1, len(in_chans)+1):
|
737 |
+
self.cut[i] = self.cut[i - 1] + in_chans[i-1]
|
738 |
+
|
739 |
+
def forward(self, x):
|
740 |
+
if self.conv_mode == "normal":
|
741 |
+
x = self.conv(x)
|
742 |
+
|
743 |
+
elif self.conv_mode == "split":
|
744 |
+
outputs = []
|
745 |
+
for j in range(len(self.cut)-1):
|
746 |
+
input_map = x[:, self.cut[j]:self.cut[j+1]]
|
747 |
+
#print(input_map.shape)
|
748 |
+
output_map = self.convs[j](input_map)
|
749 |
+
outputs.append(output_map)
|
750 |
+
#print(output_map.shape)
|
751 |
+
x = torch.cat(outputs, dim=1)
|
752 |
+
|
753 |
+
return x
|
754 |
+
|
755 |
+
|
756 |
+
class LANet(torch.nn.Module):
|
757 |
+
def __init__(self, in_chans=512, reduction_ratio=2.0):
|
758 |
+
super().__init__()
|
759 |
+
|
760 |
+
self.in_chans = in_chans
|
761 |
+
self.mid_chans = int(self.in_chans/reduction_ratio)
|
762 |
+
|
763 |
+
self.conv1 = nn.Conv2d(self.in_chans, self.mid_chans, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
764 |
+
self.conv2 = nn.Conv2d(self.mid_chans, 1, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
765 |
+
|
766 |
+
def forward(self, x):
|
767 |
+
|
768 |
+
x = F.relu(self.conv1(x))
|
769 |
+
x = torch.sigmoid(self.conv2(x))
|
770 |
+
|
771 |
+
return x
|
772 |
+
|
773 |
+
|
774 |
+
def MAD(x, p=0.6):
|
775 |
+
B, C, W, H = x.shape
|
776 |
+
|
777 |
+
mask1 = torch.cat([torch.randperm(C).unsqueeze(dim=0) for j in range(B)], dim=0).cuda()
|
778 |
+
mask2 = torch.rand([B, C]).cuda()
|
779 |
+
ones = torch.ones([B, C], dtype=torch.float).cuda()
|
780 |
+
zeros = torch.zeros([B, C], dtype=torch.float).cuda()
|
781 |
+
mask = torch.where(mask1 == 0, zeros, ones)
|
782 |
+
mask = torch.where(mask2 < p, mask, ones)
|
783 |
+
|
784 |
+
x = x.permute(2, 3, 0, 1)
|
785 |
+
x = x.mul(mask)
|
786 |
+
x = x.permute(2, 3, 0, 1)
|
787 |
+
return x
|
788 |
+
|
789 |
+
|
790 |
+
class LANets(torch.nn.Module):
|
791 |
+
|
792 |
+
def __init__(self, branch_num=2, feature_dim=512, la_reduction_ratio=2.0, MAD=MAD):
|
793 |
+
super().__init__()
|
794 |
+
|
795 |
+
self.LANets = nn.ModuleList()
|
796 |
+
for i in range(branch_num):
|
797 |
+
self.LANets.append(LANet(in_chans=feature_dim, reduction_ratio=la_reduction_ratio))
|
798 |
+
|
799 |
+
self.MAD = MAD
|
800 |
+
self.branch_num = branch_num
|
801 |
+
|
802 |
+
def forward(self, x):
|
803 |
+
|
804 |
+
B, C, W, H = x.shape
|
805 |
+
|
806 |
+
outputs = []
|
807 |
+
for lanet in self.LANets:
|
808 |
+
output = lanet(x)
|
809 |
+
outputs.append(output)
|
810 |
+
|
811 |
+
LANets_output = torch.cat(outputs, dim=1)
|
812 |
+
|
813 |
+
if self.MAD and self.branch_num != 1:
|
814 |
+
LANets_output = self.MAD(LANets_output)
|
815 |
+
|
816 |
+
mask = torch.max(LANets_output, dim=1).values.reshape(B, 1, W, H)
|
817 |
+
x = x.mul(mask)
|
818 |
+
|
819 |
+
return x
|
820 |
+
|
821 |
+
|
822 |
+
class FeatureAttentionNet(torch.nn.Module):
|
823 |
+
def __init__(self, in_chans=768, feature_dim=512, kernel_size=3,
|
824 |
+
conv_shared=False, conv_mode="normal",
|
825 |
+
channel_attention=None, spatial_attention=None,
|
826 |
+
pooling="max", la_branch_num=2):
|
827 |
+
super().__init__()
|
828 |
+
|
829 |
+
self.conv_shared = conv_shared
|
830 |
+
self.channel_attention = channel_attention
|
831 |
+
self.spatial_attention = spatial_attention
|
832 |
+
|
833 |
+
if not self.conv_shared:
|
834 |
+
if conv_mode == "normal":
|
835 |
+
self.conv = ConvLayer(in_chans=in_chans, out_chans=feature_dim,
|
836 |
+
conv_mode="normal", kernel_size=kernel_size)
|
837 |
+
elif conv_mode == "split" and in_chans == 2112:
|
838 |
+
self.conv = ConvLayer(in_chans=[192, 384, 768, 768], out_chans=[47, 93, 186, 186],
|
839 |
+
conv_mode="split", kernel_size=kernel_size)
|
840 |
+
|
841 |
+
if self.channel_attention == "CBAM":
|
842 |
+
self.channel_attention = ChannelGate(gate_channels=feature_dim)
|
843 |
+
|
844 |
+
if self.spatial_attention == "CBAM":
|
845 |
+
self.spatial_attention = SpatialGate()
|
846 |
+
elif self.spatial_attention == "LANet":
|
847 |
+
self.spatial_attention = LANets(branch_num=la_branch_num, feature_dim=feature_dim)
|
848 |
+
|
849 |
+
if pooling == "max":
|
850 |
+
self.pool = nn.AdaptiveMaxPool2d((1, 1))
|
851 |
+
elif pooling == "avg":
|
852 |
+
self.pool = nn.AdaptiveAvgPool2d((1, 1))
|
853 |
+
|
854 |
+
self.act = nn.ReLU(inplace=True)
|
855 |
+
self.norm = nn.BatchNorm1d(num_features=feature_dim, eps=2e-5)
|
856 |
+
|
857 |
+
def forward(self, x):
|
858 |
+
|
859 |
+
if not self.conv_shared:
|
860 |
+
x = self.conv(x)
|
861 |
+
|
862 |
+
if self.channel_attention:
|
863 |
+
x = self.channel_attention(x)
|
864 |
+
|
865 |
+
if self.spatial_attention:
|
866 |
+
x = self.spatial_attention(x)
|
867 |
+
|
868 |
+
x = self.act(x)
|
869 |
+
B, C, _, __ = x.shape
|
870 |
+
x = self.pool(x).reshape(B, C)
|
871 |
+
x = self.norm(x)
|
872 |
+
|
873 |
+
return x
|
874 |
+
|
875 |
+
|
876 |
+
class FeatureAttentionModule(torch.nn.Module):
|
877 |
+
def __init__(self, branch_num=11, in_chans=2112, feature_dim=512, conv_shared=False, conv_mode="split", kernel_size=3,
|
878 |
+
channel_attention="CBAM", spatial_attention=None, la_num_list=[2 for j in range(11)], pooling="max"):
|
879 |
+
super().__init__()
|
880 |
+
|
881 |
+
|
882 |
+
self.conv_shared = conv_shared
|
883 |
+
if self.conv_shared:
|
884 |
+
if conv_mode == "normal":
|
885 |
+
self.conv = ConvLayer(in_chans=in_chans, out_chans=feature_dim,
|
886 |
+
conv_mode="normal", kernel_size=kernel_size)
|
887 |
+
elif conv_mode == "split" and in_chans == 2112:
|
888 |
+
self.conv = ConvLayer(in_chans=[192, 384, 768, 768], out_chans=[47, 93, 186, 186],
|
889 |
+
conv_mode="split", kernel_size=kernel_size)
|
890 |
+
|
891 |
+
self.nets = nn.ModuleList()
|
892 |
+
for i in range(branch_num):
|
893 |
+
net = FeatureAttentionNet(in_chans=in_chans, feature_dim=feature_dim,
|
894 |
+
conv_shared=conv_shared, conv_mode=conv_mode, kernel_size=kernel_size,
|
895 |
+
channel_attention=channel_attention, spatial_attention=spatial_attention,
|
896 |
+
la_branch_num=la_num_list[i], pooling=pooling)
|
897 |
+
self.nets.append(net)
|
898 |
+
|
899 |
+
self.apply(self._init_weights)
|
900 |
+
|
901 |
+
def _init_weights(self, m):
|
902 |
+
if isinstance(m, nn.Linear):
|
903 |
+
trunc_normal_(m.weight, std=.02)
|
904 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
905 |
+
nn.init.constant_(m.bias, 0)
|
906 |
+
elif isinstance(m, nn.LayerNorm):
|
907 |
+
nn.init.constant_(m.bias, 0)
|
908 |
+
nn.init.constant_(m.weight, 1.0)
|
909 |
+
|
910 |
+
def forward(self, x):
|
911 |
+
|
912 |
+
if self.conv_shared:
|
913 |
+
x = self.conv(x)
|
914 |
+
|
915 |
+
outputs = []
|
916 |
+
for net in self.nets:
|
917 |
+
output = net(x).unsqueeze(dim=0)
|
918 |
+
outputs.append(output)
|
919 |
+
outputs = torch.cat(outputs, dim=0)
|
920 |
+
|
921 |
+
return outputs
|
922 |
+
|
923 |
+
class TaskSpecificSubnet(torch.nn.Module):
|
924 |
+
def __init__(self, feature_dim=512, drop_rate=0.5):
|
925 |
+
super().__init__()
|
926 |
+
self.feature = nn.Sequential(
|
927 |
+
nn.Linear(feature_dim, feature_dim),
|
928 |
+
nn.ReLU(True),
|
929 |
+
nn.Dropout(drop_rate),
|
930 |
+
nn.Linear(feature_dim, feature_dim),
|
931 |
+
nn.ReLU(True),
|
932 |
+
nn.Dropout(drop_rate),)
|
933 |
+
|
934 |
+
def forward(self, x):
|
935 |
+
return self.feature(x)
|
936 |
+
|
937 |
+
class TaskSpecificSubnets(torch.nn.Module):
|
938 |
+
def __init__(self, branch_num=11):
|
939 |
+
super().__init__()
|
940 |
+
|
941 |
+
self.branch_num = branch_num
|
942 |
+
self.nets = nn.ModuleList()
|
943 |
+
for i in range(self.branch_num):
|
944 |
+
net = TaskSpecificSubnet(drop_rate=0.5)
|
945 |
+
self.nets.append(net)
|
946 |
+
|
947 |
+
self.apply(self._init_weights)
|
948 |
+
|
949 |
+
def _init_weights(self, m):
|
950 |
+
if isinstance(m, nn.Linear):
|
951 |
+
trunc_normal_(m.weight, std=.02)
|
952 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
953 |
+
nn.init.constant_(m.bias, 0)
|
954 |
+
elif isinstance(m, nn.LayerNorm):
|
955 |
+
nn.init.constant_(m.bias, 0)
|
956 |
+
nn.init.constant_(m.weight, 1.0)
|
957 |
+
|
958 |
+
def forward(self, x):
|
959 |
+
|
960 |
+
outputs = []
|
961 |
+
for i in range(self.branch_num):
|
962 |
+
net = self.nets[i]
|
963 |
+
output = net(x[i]).unsqueeze(dim=0)
|
964 |
+
outputs.append(output)
|
965 |
+
outputs = torch.cat(outputs, dim=0)
|
966 |
+
|
967 |
+
return outputs
|
968 |
+
|
969 |
+
class OutputModule(torch.nn.Module):
|
970 |
+
def __init__(self, feature_dim=512, output_type="Dict"):
|
971 |
+
super().__init__()
|
972 |
+
self.output_sizes = [[2],
|
973 |
+
[1, 2],
|
974 |
+
[7, 2],
|
975 |
+
[2 for j in range(6)],
|
976 |
+
[2 for j in range(10)],
|
977 |
+
[2 for j in range(5)],
|
978 |
+
[2, 2],
|
979 |
+
[2 for j in range(4)],
|
980 |
+
[2 for j in range(6)],
|
981 |
+
[2, 2],
|
982 |
+
[2, 2]]
|
983 |
+
|
984 |
+
self.output_fcs = nn.ModuleList()
|
985 |
+
for i in range(0, len(self.output_sizes)):
|
986 |
+
for j in range(len(self.output_sizes[i])):
|
987 |
+
output_fc = nn.Linear(feature_dim, self.output_sizes[i][j])
|
988 |
+
self.output_fcs.append(output_fc)
|
989 |
+
|
990 |
+
self.task_names = [
|
991 |
+
'Age', 'Attractive', 'Blurry', 'Chubby', 'Heavy Makeup', 'Gender', 'Oval Face', 'Pale Skin',
|
992 |
+
'Smiling', 'Young',
|
993 |
+
'Bald', 'Bangs', 'Black Hair', 'Blond Hair', 'Brown Hair', 'Gray Hair', 'Receding Hairline',
|
994 |
+
'Straight Hair', 'Wavy Hair', 'Wearing Hat',
|
995 |
+
'Arched Eyebrows', 'Bags Under Eyes', 'Bushy Eyebrows', 'Eyeglasses', 'Narrow Eyes', 'Big Nose',
|
996 |
+
'Pointy Nose', 'High Cheekbones', 'Rosy Cheeks', 'Wearing Earrings',
|
997 |
+
'Sideburns', r"Five O'Clock Shadow", 'Big Lips', 'Mouth Slightly Open', 'Mustache',
|
998 |
+
'Wearing Lipstick', 'No Beard', 'Double Chin', 'Goatee', 'Wearing Necklace',
|
999 |
+
'Wearing Necktie', 'Expression', 'Recognition'] # Total:43
|
1000 |
+
|
1001 |
+
self.output_type = output_type
|
1002 |
+
|
1003 |
+
self.apply(self._init_weights)
|
1004 |
+
|
1005 |
+
def set_output_type(self, output_type):
|
1006 |
+
self.output_type = output_type
|
1007 |
+
|
1008 |
+
def _init_weights(self, m):
|
1009 |
+
if isinstance(m, nn.Linear):
|
1010 |
+
trunc_normal_(m.weight, std=.02)
|
1011 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
1012 |
+
nn.init.constant_(m.bias, 0)
|
1013 |
+
elif isinstance(m, nn.LayerNorm):
|
1014 |
+
nn.init.constant_(m.bias, 0)
|
1015 |
+
nn.init.constant_(m.weight, 1.0)
|
1016 |
+
|
1017 |
+
def forward(self, x, embedding):
|
1018 |
+
|
1019 |
+
outputs = []
|
1020 |
+
|
1021 |
+
k = 0
|
1022 |
+
for i in range(0, len(self.output_sizes)):
|
1023 |
+
for j in range(len(self.output_sizes[i])):
|
1024 |
+
output_fc = self.output_fcs[k]
|
1025 |
+
output = output_fc(x[i])
|
1026 |
+
outputs.append(output)
|
1027 |
+
k += 1
|
1028 |
+
|
1029 |
+
[gender,
|
1030 |
+
age, young,
|
1031 |
+
expression, smiling,
|
1032 |
+
attractive, blurry, chubby, heavy_makeup, oval_face, pale_skin,
|
1033 |
+
bald, bangs, black_hair, blond_hair, brown_hair, gray_hair, receding_hairline, straight_hair, wavy_hair,
|
1034 |
+
wearing_hat,
|
1035 |
+
arched_eyebrows, bags_under_eyes, bushy_eyebrows, eyeglasses, narrow_eyes,
|
1036 |
+
big_nose, pointy_nose,
|
1037 |
+
high_cheekbones, rosy_cheeks, wearing_earrings, sideburns,
|
1038 |
+
five_o_clock_shadow, big_lips, mouth_slightly_open, mustache, wearing_lipstick, no_beard,
|
1039 |
+
double_chin, goatee,
|
1040 |
+
wearing_necklace, wearing_necktie] = outputs
|
1041 |
+
|
1042 |
+
outputs = [age, attractive, blurry, chubby, heavy_makeup, gender, oval_face, pale_skin, smiling, young,
|
1043 |
+
bald, bangs, black_hair, blond_hair, brown_hair, gray_hair, receding_hairline,
|
1044 |
+
straight_hair, wavy_hair, wearing_hat,
|
1045 |
+
arched_eyebrows, bags_under_eyes, bushy_eyebrows, eyeglasses, narrow_eyes, big_nose,
|
1046 |
+
pointy_nose, high_cheekbones, rosy_cheeks, wearing_earrings,
|
1047 |
+
sideburns, five_o_clock_shadow, big_lips, mouth_slightly_open, mustache,
|
1048 |
+
wearing_lipstick, no_beard, double_chin, goatee, wearing_necklace,
|
1049 |
+
wearing_necktie, expression] # Total:42
|
1050 |
+
|
1051 |
+
outputs.append(embedding)
|
1052 |
+
|
1053 |
+
result = dict()
|
1054 |
+
for j in range(43):
|
1055 |
+
result[self.task_names[j]] = outputs[j]
|
1056 |
+
|
1057 |
+
if self.output_type == "Dict":
|
1058 |
+
return result
|
1059 |
+
elif self.output_type == "List":
|
1060 |
+
return outputs
|
1061 |
+
elif self.output_type == "Attribute":
|
1062 |
+
return outputs[1: 41]
|
1063 |
+
else:
|
1064 |
+
return result[self.output_type]
|
1065 |
+
|
1066 |
+
|
1067 |
+
class ModelBox(torch.nn.Module):
|
1068 |
+
|
1069 |
+
def __init__(self, backbone=None, fam=None, tss=None, om=None,
|
1070 |
+
feature="global", output_type="Dict"):
|
1071 |
+
super().__init__()
|
1072 |
+
self.backbone = backbone
|
1073 |
+
self.fam = fam
|
1074 |
+
self.tss = tss
|
1075 |
+
self.om = om
|
1076 |
+
self.output_type = output_type
|
1077 |
+
if self.om:
|
1078 |
+
self.om.set_output_type(self.output_type)
|
1079 |
+
|
1080 |
+
self.feature = feature
|
1081 |
+
|
1082 |
+
def set_output_type(self, output_type):
|
1083 |
+
self.output_type = output_type
|
1084 |
+
if self.om:
|
1085 |
+
self.om.set_output_type(self.output_type)
|
1086 |
+
|
1087 |
+
|
1088 |
+
def forward(self, x):
|
1089 |
+
|
1090 |
+
local_features, global_features, embedding = self.backbone(x)
|
1091 |
+
|
1092 |
+
if self.feature == "all":
|
1093 |
+
x = torch.cat([local_features, global_features], dim=1)
|
1094 |
+
elif self.feature == "global":
|
1095 |
+
x = global_features
|
1096 |
+
elif self.feature == "local":
|
1097 |
+
x = local_features
|
1098 |
+
|
1099 |
+
x = self.fam(x)
|
1100 |
+
x = self.tss(x)
|
1101 |
+
|
1102 |
+
x = self.om(x, embedding)
|
1103 |
+
return x
|
1104 |
+
|
1105 |
+
def build_model(cfg):
|
1106 |
+
|
1107 |
+
backbone = SwinTransformer(num_classes=cfg.embedding_size)
|
1108 |
+
|
1109 |
+
fam = FeatureAttentionModule(
|
1110 |
+
in_chans=cfg.fam_in_chans, kernel_size=cfg.fam_kernel_size,
|
1111 |
+
conv_shared=cfg.fam_conv_shared, conv_mode=cfg.fam_conv_mode,
|
1112 |
+
channel_attention=cfg.fam_channel_attention, spatial_attention=cfg.fam_spatial_attention,
|
1113 |
+
pooling=cfg.fam_pooling, la_num_list=cfg.fam_la_num_list)
|
1114 |
+
tss = TaskSpecificSubnets()
|
1115 |
+
om = OutputModule()
|
1116 |
+
|
1117 |
+
model = ModelBox(backbone=backbone, fam=fam, tss=tss, om=om, feature=cfg.fam_feature)
|
1118 |
+
|
1119 |
+
return model
|
1120 |
+
|
1121 |
+
class SwinFaceCfg:
|
1122 |
+
network = "swin_t"
|
1123 |
+
fam_kernel_size=3
|
1124 |
+
fam_in_chans=2112
|
1125 |
+
fam_conv_shared=False
|
1126 |
+
fam_conv_mode="split"
|
1127 |
+
fam_channel_attention="CBAM"
|
1128 |
+
fam_spatial_attention=None
|
1129 |
+
fam_pooling="max"
|
1130 |
+
fam_la_num_list=[2 for j in range(11)]
|
1131 |
+
fam_feature="all"
|
1132 |
+
fam = "3x3_2112_F_s_C_N_max"
|
1133 |
+
embedding_size = 512
|
1134 |
+
|
1135 |
+
@torch.no_grad()
|
1136 |
+
def load_model():
|
1137 |
+
cfg = SwinFaceCfg()
|
1138 |
+
weight = os.getcwd() + "/weights.pt"
|
1139 |
+
if not os.path.isfile(weight):
|
1140 |
+
gdown.download("https://drive.google.com/uc?export=download&id=1fi4IuuFV8NjnWm-CufdrhMKrkjxhSmjx", weight)
|
1141 |
+
|
1142 |
+
model = build_model(cfg)
|
1143 |
+
dict_checkpoint = torch.load(weight, map_location=torch.device('cpu'))
|
1144 |
+
model.backbone.load_state_dict(dict_checkpoint["state_dict_backbone"])
|
1145 |
+
model.fam.load_state_dict(dict_checkpoint["state_dict_fam"])
|
1146 |
+
model.tss.load_state_dict(dict_checkpoint["state_dict_tss"])
|
1147 |
+
model.om.load_state_dict(dict_checkpoint["state_dict_om"])
|
1148 |
+
|
1149 |
+
model.eval()
|
1150 |
+
return model
|
1151 |
+
|
1152 |
+
|
1153 |
+
def get_embeddings(model, images):
|
1154 |
+
embeddings = []
|
1155 |
+
for img in images:
|
1156 |
+
img = cv2.resize(np.array(img), (112, 112))
|
1157 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
1158 |
+
img = np.transpose(img, (2, 0, 1))
|
1159 |
+
img = torch.from_numpy(img).unsqueeze(0).float()
|
1160 |
+
img.div_(255).sub_(0.5).div_(0.5)
|
1161 |
+
with torch.inference_mode():
|
1162 |
+
output = model(img)
|
1163 |
+
embeddings.append(output["Recognition"][0].numpy())
|
1164 |
+
return embeddings
|