mtDNALocation / model.py
VyLala's picture
Update model.py
a63f173 verified
raw
history blame
79.3 kB
import re
import pycountry
from docx import Document
import json
import os
import numpy as np
import faiss
from collections import defaultdict
import ast # For literal_eval
import math # For ceiling function
import data_preprocess
import mtdna_classifier
# --- IMPORTANT: UNCOMMENT AND CONFIGURE YOUR REAL API KEY ---
import google.generativeai as genai
#genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
genai.configure(api_key=os.getenv("GOOGLE_API_KEY_BACKUP"))
import nltk
from nltk.corpus import stopwords
try:
nltk.data.find('corpora/stopwords')
except LookupError:
nltk.download('stopwords')
nltk.download('punkt_tab')
# # --- Define Pricing Constants (for Gemini 1.5 Flash & text-embedding-004) ---
# # Prices are per 1,000 tokens
# PRICE_PER_1K_INPUT_LLM = 0.000075 # $0.075 per 1M tokens
# PRICE_PER_1K_OUTPUT_LLM = 0.0003 # $0.30 per 1M tokens
# PRICE_PER_1K_EMBEDDING_INPUT = 0.000025 # $0.025 per 1M tokens
# Gemini 2.5 Flash-Lite pricing per 1,000 tokens
PRICE_PER_1K_INPUT_LLM = 0.00010 # $0.10 per 1M input tokens
PRICE_PER_1K_OUTPUT_LLM = 0.00040 # $0.40 per 1M output tokens
# Embedding-001 pricing per 1,000 input tokens
PRICE_PER_1K_EMBEDDING_INPUT = 0.00015 # $0.15 per 1M input tokens
# --- API Functions (REAL API FUNCTIONS) ---
# def get_embedding(text, task_type="RETRIEVAL_DOCUMENT"):
# """Generates an embedding for the given text using a Google embedding model."""
# try:
# result = genai.embed_content(
# model="models/text-embedding-004", # Specify the embedding model
# content=text,
# task_type=task_type
# )
# return np.array(result['embedding']).astype('float32')
# except Exception as e:
# print(f"Error getting embedding: {e}")
# return np.zeros(768, dtype='float32')
def get_embedding(text, task_type="RETRIEVAL_DOCUMENT"):
"""Safe Gemini 1.5 embedding call with fallback."""
import numpy as np
try:
if not text or len(text.strip()) == 0:
raise ValueError("Empty text cannot be embedded.")
result = genai.embed_content(
model="models/text-embedding-004",
content=text,
task_type=task_type
)
return np.array(result['embedding'], dtype='float32')
except Exception as e:
print(f"❌ Embedding error: {e}")
return np.zeros(768, dtype='float32')
def call_llm_api(prompt, model_name="gemini-2.5-flash-lite"):#'gemini-1.5-flash-latest'):
"""Calls a Google Gemini LLM with the given prompt."""
try:
model = genai.GenerativeModel(model_name)
response = model.generate_content(prompt)
return response.text, model # Return model instance for token counting
except Exception as e:
print(f"Error calling LLM: {e}")
return "Error: Could not get response from LLM API.", None
# --- Core Document Processing Functions (All previously provided and fixed) ---
def read_docx_text(path):
"""
Reads text and extracts potential table-like strings from a .docx document.
Separates plain text from structured [ [ ] ] list-like tables.
Also attempts to extract a document title.
"""
doc = Document(path)
plain_text_paragraphs = []
table_strings = []
document_title = "Unknown Document Title" # Default
# Attempt to extract the document title from the first few paragraphs
title_paragraphs = [p.text.strip() for p in doc.paragraphs[:5] if p.text.strip()]
if title_paragraphs:
# A heuristic to find a title: often the first or second non-empty paragraph
# or a very long first paragraph if it's the title
if len(title_paragraphs[0]) > 50 and "Human Genetics" not in title_paragraphs[0]:
document_title = title_paragraphs[0]
elif len(title_paragraphs) > 1 and len(title_paragraphs[1]) > 50 and "Human Genetics" not in title_paragraphs[1]:
document_title = title_paragraphs[1]
elif any("Complete mitochondrial genomes" in p for p in title_paragraphs):
# Fallback to a known title phrase if present
document_title = "Complete mitochondrial genomes of Thai and Lao populations indicate an ancient origin of Austroasiatic groups and demic diffusion in the spread of Tai–Kadai languages"
current_table_lines = []
in_table_parsing_mode = False
for p in doc.paragraphs:
text = p.text.strip()
if not text:
continue
# Condition to start or continue table parsing
if text.startswith("## Table "): # Start of a new table section
if in_table_parsing_mode and current_table_lines:
table_strings.append("\n".join(current_table_lines))
current_table_lines = [text] # Include the "## Table X" line
in_table_parsing_mode = True
elif in_table_parsing_mode and (text.startswith("[") or text.startswith('"')):
# Continue collecting lines if we're in table mode and it looks like table data
# Table data often starts with '[' for lists, or '"' for quoted strings within lists.
current_table_lines.append(text)
else:
# If not in table mode, or if a line doesn't look like table data,
# then close the current table (if any) and add the line to plain text.
if in_table_parsing_mode and current_table_lines:
table_strings.append("\n".join(current_table_lines))
current_table_lines = []
in_table_parsing_mode = False
plain_text_paragraphs.append(text)
# After the loop, add any remaining table lines
if current_table_lines:
table_strings.append("\n".join(current_table_lines))
return "\n".join(plain_text_paragraphs), table_strings, document_title
# --- Structured Data Extraction and RAG Functions ---
def parse_literal_python_list(table_str):
list_match = re.search(r'(\[\s*\[\s*(?:.|\n)*?\s*\]\s*\])', table_str)
#print("Debug: list_match object (before if check):", list_match)
if not list_match:
if "table" in table_str.lower(): # then the table doest have the "]]" at the end
table_str += "]]"
list_match = re.search(r'(\[\s*\[\s*(?:.|\n)*?\s*\]\s*\])', table_str)
if list_match:
try:
matched_string = list_match.group(1)
#print("Debug: Matched string for literal_eval:", matched_string)
return ast.literal_eval(matched_string)
except (ValueError, SyntaxError) as e:
print(f"Error evaluating literal: {e}")
return []
return []
_individual_code_parser = re.compile(r'([A-Z0-9]+?)(\d+)$', re.IGNORECASE)
def _parse_individual_code_parts(code_str):
match = _individual_code_parser.search(code_str)
if match:
return match.group(1), match.group(2)
return None, None
def parse_sample_id_to_population_code(plain_text_content):
sample_id_map = {}
contiguous_ranges_data = defaultdict(list)
#section_start_marker = "The sample identification of each population is as follows:"
section_start_marker = ["The sample identification of each population is as follows:","## table"]
for s in section_start_marker:
relevant_text_search = re.search(
re.escape(s.lower()) + r"\s*(.*?)(?=\n##|\Z)",
plain_text_content.lower(),
re.DOTALL
)
if relevant_text_search:
break
if not relevant_text_search:
print("Warning: 'Sample ID Population Code' section start marker not found or block empty.")
return sample_id_map, contiguous_ranges_data
relevant_text_block = relevant_text_search.group(1).strip()
# print(f"\nDEBUG_PARSING: --- Start of relevant_text_block (first 500 chars) ---")
# print(relevant_text_block[:500])
# print(f"DEBUG_PARSING: --- End of relevant_text_block (last 500 chars) ---")
# print(relevant_text_block[-500:])
# print(f"DEBUG_PARSING: Relevant text block length: {len(relevant_text_block)}")
mapping_pattern = re.compile(
r'\b([A-Z0-9]+\d+)(?:-([A-Z0-9]+\d+))?\s+([A-Z0-9]+)\b', # Changed the last group
re.IGNORECASE)
range_expansion_count = 0
direct_id_count = 0
total_matches_found = 0
for match in mapping_pattern.finditer(relevant_text_block):
total_matches_found += 1
id1_full_str, id2_full_str_opt, pop_code = match.groups()
#print(f" DEBUG_PARSING: Matched: '{match.group(0)}'")
pop_code_upper = pop_code.upper()
id1_prefix, id1_num_str = _parse_individual_code_parts(id1_full_str)
if id1_prefix is None:
#print(f" DEBUG_PARSING: Failed to parse ID1: {id1_full_str}. Skipping this mapping.")
continue
if id2_full_str_opt:
id2_prefix_opt, id2_num_str_opt = _parse_individual_code_parts(id2_full_str_opt)
if id2_prefix_opt is None:
#print(f" DEBUG_PARSING: Failed to parse ID2: {id2_full_str_opt}. Treating {id1_full_str} as single ID1.")
sample_id_map[f"{id1_prefix.upper()}{id1_num_str}"] = pop_code_upper
direct_id_count += 1
continue
#print(f" DEBUG_PARSING: Comparing prefixes: '{id1_prefix.lower()}' vs '{id2_prefix_opt.lower()}'")
if id1_prefix.lower() == id2_prefix_opt.lower():
#print(f" DEBUG_PARSING: ---> Prefixes MATCH for range expansion! Range: {id1_prefix}{id1_num_str}-{id2_prefix_opt}{id2_num_str_opt}")
try:
start_num = int(id1_num_str)
end_num = int(id2_num_str_opt)
for num in range(start_num, end_num + 1):
sample_id = f"{id1_prefix.upper()}{num}"
sample_id_map[sample_id] = pop_code_upper
range_expansion_count += 1
contiguous_ranges_data[id1_prefix.upper()].append(
(start_num, end_num, pop_code_upper)
)
except ValueError:
print(f" DEBUG_PARSING: ValueError in range conversion for {id1_num_str}-{id2_num_str_opt}. Adding endpoints only.")
sample_id_map[f"{id1_prefix.upper()}{id1_num_str}"] = pop_code_upper
sample_id_map[f"{id2_prefix_opt.upper()}{id2_num_str_opt}"] = pop_code_upper
direct_id_count += 2
else:
#print(f" DEBUG_PARSING: Prefixes MISMATCH for range: '{id1_prefix}' vs '{id2_prefix_opt}'. Adding endpoints only.")
sample_id_map[f"{id1_prefix.upper()}{id1_num_str}"] = pop_code_upper
sample_id_map[f"{id2_prefix_opt.upper()}{id2_num_str_opt}"] = pop_code_upper
direct_id_count += 2
else:
sample_id_map[f"{id1_prefix.upper()}{id1_num_str}"] = pop_code_upper
direct_id_count += 1
# print(f"DEBUG_PARSING: Total matches found by regex: {total_matches_found}.")
# print(f"DEBUG_PARSING: Parsed sample IDs: {len(sample_id_map)} total entries.")
# print(f"DEBUG_PARSING: (including {range_expansion_count} from range expansion and {direct_id_count} direct ID/endpoint entries).")
return sample_id_map, contiguous_ranges_data
country_keywords_regional_overrides = {
"north thailand": "Thailand", "central thailand": "Thailand",
"northeast thailand": "Thailand", "east myanmar": "Myanmar", "west thailand": "Thailand",
"central india": "India", "east india": "India", "northeast india": "India",
"south sibera": "Russia", "siberia": "Russia", "yunnan": "China", #"tibet": "China",
"sumatra": "Indonesia", "borneo": "Indonesia",
"northern mindanao": "Philippines", "west malaysia": "Malaysia",
"mongolia": "China",
"beijing": "China",
"north laos": "Laos", "central laos": "Laos",
"east myanmar": "Myanmar", "west myanmar": "Myanmar"}
# Updated get_country_from_text function
def get_country_from_text(text):
text_lower = text.lower()
# 1. Use pycountry for official country names and common aliases
for country in pycountry.countries:
# Check full name match first
if text_lower == country.name.lower():
return country.name
# Safely check for common_name
if hasattr(country, 'common_name') and text_lower == country.common_name.lower():
return country.common_name
# Safely check for official_name
if hasattr(country, 'official_name') and text_lower == country.official_name.lower():
return country.official_name
# Check if country name is part of the text (e.g., 'Thailand' in 'Thailand border')
if country.name.lower() in text_lower:
return country.name
# Safely check if common_name is part of the text
if hasattr(country, 'common_name') and country.common_name.lower() in text_lower:
return country.common_name
# 2. Prioritize specific regional overrides
for keyword, country in country_keywords_regional_overrides.items():
if keyword in text_lower:
return country
# 3. Check for broader regions that you want to map to "unknown" or a specific country
if "north asia" in text_lower or "southeast asia" in text_lower or "east asia" in text_lower:
return "unknown"
return "unknown"
# Get the list of English stop words from NLTK
non_meaningful_pop_names = set(stopwords.words('english'))
def parse_population_code_to_country(plain_text_content, table_strings):
pop_code_country_map = {}
pop_code_ethnicity_map = {} # NEW: To store ethnicity for structured lookup
pop_code_specific_loc_map = {} # NEW: To store specific location for structured lookup
# Regex for parsing population info in structured lists and general text
# This pattern captures: (Pop Name/Ethnicity) (Pop Code) (Region/Specific Location) (Country) (Linguistic Family)
# The 'Pop Name/Ethnicity' (Group 1) is often the ethnicity
pop_info_pattern = re.compile(
r'([A-Za-z\s]+?)\s+([A-Z]+\d*)\s+' # Pop Name (Group 1), Pop Code (Group 2) - Changed \d+ to \d* for codes like 'SH'
r'([A-Za-z\s\(\)\-,\/]+?)\s+' # Region/Specific Location (Group 3)
r'(North+|South+|West+|East+|Thailand|Laos|Cambodia|Myanmar|Philippines|Indonesia|Malaysia|China|India|Taiwan|Vietnam|Russia|Nepal|Japan|South Korea)\b' # Country (Group 4)
r'(?:.*?([A-Za-z\s\-]+))?\s*' # Optional Linguistic Family (Group 5), made optional with ?, followed by optional space
r'(\d+(?:\s+\d+\.?\d*)*)?', # Match all the numbers (Group 6) - made optional
re.IGNORECASE
)
for table_str in table_strings:
table_data = parse_literal_python_list(table_str)
if table_data:
is_list_of_lists = bool(table_data) and isinstance(table_data[0], list)
if is_list_of_lists:
for row_idx, row in enumerate(table_data):
row_text = " ".join(map(str, row))
match = pop_info_pattern.search(row_text)
if match:
pop_name = match.group(1).strip()
pop_code = match.group(2).upper()
specific_loc_text = match.group(3).strip()
country_text = match.group(4).strip()
linguistic_family = match.group(5).strip() if match.group(5) else 'unknown'
final_country = get_country_from_text(country_text)
if final_country == 'unknown': # Try specific loc text for country if direct country is not found
final_country = get_country_from_text(specific_loc_text)
if pop_code:
pop_code_country_map[pop_code] = final_country
# Populate ethnicity map (often Pop Name is ethnicity)
pop_code_ethnicity_map[pop_code] = pop_name
# Populate specific location map
pop_code_specific_loc_map[pop_code] = specific_loc_text # Store as is from text
else:
row_text = " ".join(map(str, table_data))
match = pop_info_pattern.search(row_text)
if match:
pop_name = match.group(1).strip()
pop_code = match.group(2).upper()
specific_loc_text = match.group(3).strip()
country_text = match.group(4).strip()
linguistic_family = match.group(5).strip() if match.group(5) else 'unknown'
final_country = get_country_from_text(country_text)
if final_country == 'unknown': # Try specific loc text for country if direct country is not found
final_country = get_country_from_text(specific_loc_text)
if pop_code:
pop_code_country_map[pop_code] = final_country
# Populate ethnicity map (often Pop Name is ethnicity)
pop_code_ethnicity_map[pop_code] = pop_name
# Populate specific location map
pop_code_specific_loc_map[pop_code] = specific_loc_text # Store as is from text
# # Special case refinements for ethnicity/location if more specific rules are known from document:
# if pop_name.lower() == "khon mueang": # and specific conditions if needed
# pop_code_ethnicity_map[pop_code] = "Khon Mueang"
# # If Khon Mueang has a specific city/district, add here
# # e.g., if 'Chiang Mai' is directly linked to KM1 in a specific table
# # pop_code_specific_loc_map[pop_code] = "Chiang Mai"
# elif pop_name.lower() == "lawa":
# pop_code_ethnicity_map[pop_code] = "Lawa"
# # Add similar specific rules for other populations (e.g., Mon for MO1, MO2, MO3)
# elif pop_name.lower() == "mon":
# pop_code_ethnicity_map[pop_code] = "Mon"
# # For MO2: "West Thailand (Thailand Myanmar border)" -> no city
# # For MO3: "East Myanmar (Thailand Myanmar border)" -> no city
# # If the doc gives "Bangkok" for MO4, add it here for MO4's actual specific_location.
# # etc.
# Fallback to parsing general plain text content (sentences)
sentences = data_preprocess.extract_sentences(plain_text_content)
for s in sentences: # Still focusing on just this one sentence
# Use re.finditer to get all matches
matches = pop_info_pattern.finditer(s)
pop_name, pop_code, specific_loc_text, country_text = "unknown", "unknown", "unknown", "unknown"
for match in matches:
if match.group(1):
pop_name = match.group(1).strip()
if match.group(2):
pop_code = match.group(2).upper()
if match.group(3):
specific_loc_text = match.group(3).strip()
if match.group(4):
country_text = match.group(4).strip()
# linguistic_family = match.group(5).strip() if match.group(5) else 'unknown' # Already captured by pop_info_pattern
final_country = get_country_from_text(country_text)
if final_country == 'unknown':
final_country = get_country_from_text(specific_loc_text)
if pop_code.lower() not in non_meaningful_pop_names:
if final_country.lower() not in non_meaningful_pop_names:
pop_code_country_map[pop_code] = final_country
if pop_name.lower() not in non_meaningful_pop_names:
pop_code_ethnicity_map[pop_code] = pop_name # Default ethnicity from Pop Name
if specific_loc_text.lower() not in non_meaningful_pop_names:
pop_code_specific_loc_map[pop_code] = specific_loc_text
# Specific rules for ethnicity/location in plain text:
if pop_name.lower() == "khon mueang":
pop_code_ethnicity_map[pop_code] = "Khon Mueang"
elif pop_name.lower() == "lawa":
pop_code_ethnicity_map[pop_code] = "Lawa"
elif pop_name.lower() == "mon":
pop_code_ethnicity_map[pop_code] = "Mon"
elif pop_name.lower() == "seak": # Added specific rule for Seak
pop_code_ethnicity_map[pop_code] = "Seak"
elif pop_name.lower() == "nyaw": # Added specific rule for Nyaw
pop_code_ethnicity_map[pop_code] = "Nyaw"
elif pop_name.lower() == "nyahkur": # Added specific rule for Nyahkur
pop_code_ethnicity_map[pop_code] = "Nyahkur"
elif pop_name.lower() == "suay": # Added specific rule for Suay
pop_code_ethnicity_map[pop_code] = "Suay"
elif pop_name.lower() == "soa": # Added specific rule for Soa
pop_code_ethnicity_map[pop_code] = "Soa"
elif pop_name.lower() == "bru": # Added specific rule for Bru
pop_code_ethnicity_map[pop_code] = "Bru"
elif pop_name.lower() == "khamu": # Added specific rule for Khamu
pop_code_ethnicity_map[pop_code] = "Khamu"
return pop_code_country_map, pop_code_ethnicity_map, pop_code_specific_loc_map
def general_parse_population_code_to_country(plain_text_content, table_strings):
pop_code_country_map = {}
pop_code_ethnicity_map = {}
pop_code_specific_loc_map = {}
sample_id_to_pop_code = {}
for table_str in table_strings:
table_data = parse_literal_python_list(table_str)
if not table_data or not isinstance(table_data[0], list):
continue
header_row = [col.lower() for col in table_data[0]]
header_map = {col: idx for idx, col in enumerate(header_row)}
# MJ17: Direct PopCode → Country
if 'id' in header_map and 'country' in header_map:
for row in table_strings[1:]:
row = parse_literal_python_list(row)[0]
if len(row) < len(header_row):
continue
pop_code = str(row[header_map['id']]).strip()
country = str(row[header_map['country']]).strip()
province = row[header_map['province']].strip() if 'province' in header_map else 'unknown'
pop_group = row[header_map['population group / region']].strip() if 'population group / region' in header_map else 'unknown'
pop_code_country_map[pop_code] = country
pop_code_specific_loc_map[pop_code] = province
pop_code_ethnicity_map[pop_code] = pop_group
# A1YU101 or EBK/KSK: SampleID → PopCode
elif 'sample id' in header_map and 'population code' in header_map:
for row in table_strings[1:]:
row = parse_literal_python_list(row)[0]
if len(row) < 2:
continue
sample_id = row[header_map['sample id']].strip().upper()
pop_code = row[header_map['population code']].strip().upper()
sample_id_to_pop_code[sample_id] = pop_code
# PopCode → Country (A1YU101/EBK mapping)
elif 'population code' in header_map and 'country' in header_map:
for row in table_strings[1:]:
row = parse_literal_python_list(row)[0]
if len(row) < 2:
continue
pop_code = row[header_map['population code']].strip().upper()
country = row[header_map['country']].strip()
pop_code_country_map[pop_code] = country
return pop_code_country_map, pop_code_ethnicity_map, pop_code_specific_loc_map, sample_id_to_pop_code
def chunk_text(text, chunk_size=500, overlap=50):
"""Splits text into chunks (by words) with overlap."""
chunks = []
words = text.split()
num_words = len(words)
start = 0
while start < num_words:
end = min(start + chunk_size, num_words)
chunk = " ".join(words[start:end])
chunks.append(chunk)
if end == num_words:
break
start += chunk_size - overlap # Move start by (chunk_size - overlap)
return chunks
def build_vector_index_and_data(doc_path, index_path="faiss_index.bin", chunks_path="document_chunks.json", structured_path="structured_lookup.json"):
"""
Reads document, builds structured lookup, chunks remaining text, embeds chunks,
and builds/saves a FAISS index.
"""
print("Step 1: Reading document and extracting structured data...")
# plain_text_content, table_strings, document_title = read_docx_text(doc_path) # Get document_title here
# sample_id_map, contiguous_ranges_data = parse_sample_id_to_population_code(plain_text_content)
# pop_code_to_country, pop_code_to_ethnicity, pop_code_to_specific_loc = parse_population_code_to_country(plain_text_content, table_strings)
# master_structured_lookup = {}
# master_structured_lookup['document_title'] = document_title # Store document title
# master_structured_lookup['sample_id_map'] = sample_id_map
# master_structured_lookup['contiguous_ranges'] = dict(contiguous_ranges_data)
# master_structured_lookup['pop_code_to_country'] = pop_code_to_country
# master_structured_lookup['pop_code_to_ethnicity'] = pop_code_to_ethnicity # NEW: Store pop_code to ethnicity map
# master_structured_lookup['pop_code_to_specific_loc'] = pop_code_to_specific_loc # NEW: Store pop_code to specific_loc map
# # Final consolidation: Use sample_id_map to derive full info for queries
# final_structured_entries = {}
# for sample_id, pop_code in master_structured_lookup['sample_id_map'].items():
# country = master_structured_lookup['pop_code_to_country'].get(pop_code, 'unknown')
# ethnicity = master_structured_lookup['pop_code_to_ethnicity'].get(pop_code, 'unknown') # Retrieve ethnicity
# specific_location = master_structured_lookup['pop_code_to_specific_loc'].get(pop_code, 'unknown') # Retrieve specific location
# final_structured_entries[sample_id] = {
# 'population_code': pop_code,
# 'country': country,
# 'type': 'modern',
# 'ethnicity': ethnicity, # Store ethnicity
# 'specific_location': specific_location # Store specific location
# }
# master_structured_lookup['final_structured_entries'] = final_structured_entries
plain_text_content, table_strings, document_title = read_docx_text(doc_path)
pop_code_to_country, pop_code_to_ethnicity, pop_code_to_specific_loc, sample_id_map = general_parse_population_code_to_country(plain_text_content, table_strings)
final_structured_entries = {}
if sample_id_map:
for sample_id, pop_code in sample_id_map.items():
country = pop_code_to_country.get(pop_code, 'unknown')
ethnicity = pop_code_to_ethnicity.get(pop_code, 'unknown')
specific_loc = pop_code_to_specific_loc.get(pop_code, 'unknown')
final_structured_entries[sample_id] = {
'population_code': pop_code,
'country': country,
'type': 'modern',
'ethnicity': ethnicity,
'specific_location': specific_loc
}
else:
for pop_code in pop_code_to_country.keys():
country = pop_code_to_country.get(pop_code, 'unknown')
ethnicity = pop_code_to_ethnicity.get(pop_code, 'unknown')
specific_loc = pop_code_to_specific_loc.get(pop_code, 'unknown')
final_structured_entries[pop_code] = {
'population_code': pop_code,
'country': country,
'type': 'modern',
'ethnicity': ethnicity,
'specific_location': specific_loc
}
if not final_structured_entries:
# traditional way of A1YU101
sample_id_map, contiguous_ranges_data = parse_sample_id_to_population_code(plain_text_content)
pop_code_to_country, pop_code_to_ethnicity, pop_code_to_specific_loc = parse_population_code_to_country(plain_text_content, table_strings)
if sample_id_map:
for sample_id, pop_code in sample_id_map.items():
country = pop_code_to_country.get(pop_code, 'unknown')
ethnicity = pop_code_to_ethnicity.get(pop_code, 'unknown')
specific_loc = pop_code_to_specific_loc.get(pop_code, 'unknown')
final_structured_entries[sample_id] = {
'population_code': pop_code,
'country': country,
'type': 'modern',
'ethnicity': ethnicity,
'specific_location': specific_loc
}
else:
for pop_code in pop_code_to_country.keys():
country = pop_code_to_country.get(pop_code, 'unknown')
ethnicity = pop_code_to_ethnicity.get(pop_code, 'unknown')
specific_loc = pop_code_to_specific_loc.get(pop_code, 'unknown')
final_structured_entries[pop_code] = {
'population_code': pop_code,
'country': country,
'type': 'modern',
'ethnicity': ethnicity,
'specific_location': specific_loc
}
master_lookup = {
'document_title': document_title,
'pop_code_to_country': pop_code_to_country,
'pop_code_to_ethnicity': pop_code_to_ethnicity,
'pop_code_to_specific_loc': pop_code_to_specific_loc,
'sample_id_map': sample_id_map,
'final_structured_entries': final_structured_entries
}
print(f"Structured lookup built with {len(final_structured_entries)} entries in 'final_structured_entries'.")
with open(structured_path, 'w') as f:
json.dump(master_lookup, f, indent=4)
print(f"Structured lookup saved to {structured_path}.")
print("Step 2: Chunking document for RAG vector index...")
# replace the chunk here with the all_output from process_inputToken and fallback to this traditional chunk
clean_text, clean_table = "", ""
if plain_text_content:
clean_text = data_preprocess.normalize_for_overlap(plain_text_content)
if table_strings:
clean_table = data_preprocess.normalize_for_overlap(". ".join(table_strings))
all_clean_chunk = clean_text + clean_table
document_chunks = chunk_text(all_clean_chunk)
print(f"Document chunked into {len(document_chunks)} chunks.")
print("Step 3: Generating embeddings for chunks (this might take time and cost API calls)...")
embedding_model_for_chunks = genai.GenerativeModel('models/text-embedding-004')
chunk_embeddings = []
for i, chunk in enumerate(document_chunks):
embedding = get_embedding(chunk, task_type="RETRIEVAL_DOCUMENT")
if embedding is not None and embedding.shape[0] > 0:
chunk_embeddings.append(embedding)
else:
print(f"Warning: Failed to get valid embedding for chunk {i}. Skipping.")
chunk_embeddings.append(np.zeros(768, dtype='float32'))
if not chunk_embeddings:
raise ValueError("No valid embeddings generated. Check get_embedding function and API.")
embedding_dimension = chunk_embeddings[0].shape[0]
index = faiss.IndexFlatL2(embedding_dimension)
index.add(np.array(chunk_embeddings))
faiss.write_index(index, index_path)
with open(chunks_path, "w") as f:
json.dump(document_chunks, f)
print(f"FAISS index built and saved to {index_path}.")
print(f"Document chunks saved to {chunks_path}.")
return master_lookup, index, document_chunks, all_clean_chunk
def load_rag_assets(index_path="faiss_index.bin", chunks_path="document_chunks.json", structured_path="structured_lookup.json"):
"""Loads pre-built RAG assets (FAISS index, chunks, structured lookup)."""
print("Loading RAG assets...")
master_structured_lookup = {}
if os.path.exists(structured_path):
with open(structured_path, 'r') as f:
master_structured_lookup = json.load(f)
print("Structured lookup loaded.")
else:
print("Structured lookup file not found. Rebuilding is likely needed.")
index = None
chunks = []
if os.path.exists(index_path) and os.path.exists(chunks_path):
try:
index = faiss.read_index(index_path)
with open(chunks_path, "r") as f:
chunks = json.load(f)
print("FAISS index and chunks loaded.")
except Exception as e:
print(f"Error loading FAISS index or chunks: {e}. Will rebuild.")
index = None
chunks = []
else:
print("FAISS index or chunks files not found.")
return master_structured_lookup, index, chunks
# Helper function for query_document_info
def exactInContext(text, keyword):
# try keyword_prfix
# code_pattern = re.compile(r'([A-Z0-9]+?)(\d+)$', re.IGNORECASE)
# # Attempt to parse the keyword into its prefix and numerical part using re.search
# keyword_match = code_pattern.search(keyword)
# keyword_prefix = None
# keyword_num = None
# if keyword_match:
# keyword_prefix = keyword_match.group(1).lower()
# keyword_num = int(keyword_match.group(2))
text = text.lower()
idx = text.find(keyword.lower())
if idx == -1:
# if keyword_prefix:
# idx = text.find(keyword_prefix)
# if idx == -1:
# return False
return False
return True
def chooseContextLLM(contexts, kw):
# if kw in context
for con in contexts:
context = contexts[con]
if context:
if exactInContext(context, kw):
return con, context
#if cannot find anything related to kw in context, return all output
if contexts["all_output"]:
return "all_output", contexts["all_output"]
else:
# if all_output not exist
# look of chunk and still not exist return document chunk
if contexts["chunk"]: return "chunk", contexts["chunk"]
elif contexts["document_chunk"]: return "document_chunk", contexts["document_chunk"]
else: return None, None
def clean_llm_output(llm_response_text, output_format_str):
results = []
lines = llm_response_text.strip().split('\n')
output_country, output_type, output_ethnicity, output_specific_location = [],[],[],[]
for line in lines:
extracted_country, extracted_type, extracted_ethnicity, extracted_specific_location = "unknown", "unknown", "unknown", "unknown"
line = line.strip()
if output_format_str == "ethnicity, specific_location/unknown": # Targeted RAG output
parsed_output = re.search(r'^\s*([^,]+?),\s*(.+?)\s*$', llm_response_text)
if parsed_output:
extracted_ethnicity = parsed_output.group(1).strip()
extracted_specific_location = parsed_output.group(2).strip()
else:
print(" DEBUG: LLM did not follow expected 2-field format for targeted RAG. Defaulting to unknown for ethnicity/specific_location.")
extracted_ethnicity = 'unknown'
extracted_specific_location = 'unknown'
elif output_format_str == "modern/ancient/unknown, ethnicity, specific_location/unknown":
parsed_output = re.search(r'^\s*([^,]+?),\s*([^,]+?),\s*(.+?)\s*$', llm_response_text)
if parsed_output:
extracted_type = parsed_output.group(1).strip()
extracted_ethnicity = parsed_output.group(2).strip()
extracted_specific_location = parsed_output.group(3).strip()
else:
# Fallback: check if only 2 fields
parsed_output_2_fields = re.search(r'^\s*([^,]+?),\s*([^,]+?)\s*$', llm_response_text)
if parsed_output_2_fields:
extracted_type = parsed_output_2_fields.group(1).strip()
extracted_ethnicity = parsed_output_2_fields.group(2).strip()
extracted_specific_location = 'unknown'
else:
# even simpler fallback: 1 field only
parsed_output_1_field = re.search(r'^\s*([^,]+?)\s*$', llm_response_text)
if parsed_output_1_field:
extracted_type = parsed_output_1_field.group(1).strip()
extracted_ethnicity = 'unknown'
extracted_specific_location = 'unknown'
else:
print(" DEBUG: LLM did not follow any expected simplified format. Attempting verbose parsing fallback.")
type_match_fallback = re.search(r'Type:\s*([A-Za-z\s-]+)', llm_response_text)
extracted_type = type_match_fallback.group(1).strip() if type_match_fallback else 'unknown'
extracted_ethnicity = 'unknown'
extracted_specific_location = 'unknown'
else:
parsed_output = re.search(r'^\s*([^,]+?),\s*([^,]+?),\s*([^,]+?),\s*(.+?)\s*$', line)
if parsed_output:
extracted_country = parsed_output.group(1).strip()
extracted_type = parsed_output.group(2).strip()
extracted_ethnicity = parsed_output.group(3).strip()
extracted_specific_location = parsed_output.group(4).strip()
else:
print(f" DEBUG: Line did not follow expected 4-field format: {line}")
parsed_output_2_fields = re.search(r'^\s*([^,]+?),\s*([^,]+?)\s*$', line)
if parsed_output_2_fields:
extracted_country = parsed_output_2_fields.group(1).strip()
extracted_type = parsed_output_2_fields.group(2).strip()
extracted_ethnicity = 'unknown'
extracted_specific_location = 'unknown'
else:
print(f" DEBUG: Fallback to verbose-style parsing: {line}")
country_match_fallback = re.search(r'Country:\s*([A-Za-z\s-]+)', line)
type_match_fallback = re.search(r'Type:\s*([A-Za-z\s-]+)', line)
extracted_country = country_match_fallback.group(1).strip() if country_match_fallback else 'unknown'
extracted_type = type_match_fallback.group(1).strip() if type_match_fallback else 'unknown'
extracted_ethnicity = 'unknown'
extracted_specific_location = 'unknown'
results.append({
"country": extracted_country,
"type": extracted_type,
"ethnicity": extracted_ethnicity,
"specific_location": extracted_specific_location
#"country_explain":extracted_country_explain,
#"type_explain": extracted_type_explain
})
# if more than 2 results
if output_format_str == "ethnicity, specific_location/unknown":
for result in results:
if result["ethnicity"] not in output_ethnicity:
output_ethnicity.append(result["ethnicity"])
if result["specific_location"] not in output_specific_location:
output_specific_location.append(result["specific_location"])
return " or ".join(output_ethnicity), " or ".join(output_specific_location)
elif output_format_str == "modern/ancient/unknown, ethnicity, specific_location/unknown":
for result in results:
if result["type"] not in output_type:
output_type.append(result["type"])
if result["ethnicity"] not in output_ethnicity:
output_ethnicity.append(result["ethnicity"])
if result["specific_location"] not in output_specific_location:
output_specific_location.append(result["specific_location"])
return " or ".join(output_type)," or ".join(output_ethnicity), " or ".join(output_specific_location)
else:
for result in results:
if result["country"] not in output_country:
output_country.append(result["country"])
if result["type"] not in output_type:
output_type.append(result["type"])
if result["ethnicity"] not in output_ethnicity:
output_ethnicity.append(result["ethnicity"])
if result["specific_location"] not in output_specific_location:
output_specific_location.append(result["specific_location"])
return " or ".join(output_country)," or ".join(output_type)," or ".join(output_ethnicity), " or ".join(output_specific_location)
# def parse_multi_sample_llm_output(raw_response: str, output_format_str):
# """
# Parse LLM output with possibly multiple metadata lines + shared explanations.
# """
# lines = [line.strip() for line in raw_response.strip().splitlines() if line.strip()]
# metadata_list = []
# explanation_lines = []
# if output_format_str == "country_name, modern/ancient/unknown":
# parts = [x.strip() for x in lines[0].split(",")]
# if len(parts)==2:
# metadata_list.append({
# "country": parts[0],
# "sample_type": parts[1]#,
# #"ethnicity": parts[2],
# #"location": parts[3]
# })
# if 1<len(lines):
# line = lines[1]
# if "\n" in line: line = line.split("\n")
# if ". " in line: line = line.split(". ")
# if isinstance(line,str): line = [line]
# explanation_lines += line
# elif output_format_str == "modern/ancient/unknown":
# metadata_list.append({
# "country": "unknown",
# "sample_type": lines[0]#,
# #"ethnicity": parts[2],
# #"location": parts[3]
# })
# explanation_lines.append(lines[1])
# # Assign explanations (optional) to each sample — same explanation reused
# for md in metadata_list:
# md["country_explanation"] = None
# md["sample_type_explanation"] = None
# if md["country"].lower() != "unknown" and len(explanation_lines) >= 1:
# md["country_explanation"] = explanation_lines[0]
# if md["sample_type"].lower() != "unknown":
# if len(explanation_lines) >= 2:
# md["sample_type_explanation"] = explanation_lines[1]
# elif len(explanation_lines) == 1 and md["country"].lower() == "unknown":
# md["sample_type_explanation"] = explanation_lines[0]
# elif len(explanation_lines) == 1:
# md["sample_type_explanation"] = explanation_lines[0]
# return metadata_list
def parse_multi_sample_llm_output(raw_response: str, output_format_str):
"""
Parse LLM output with possibly multiple metadata lines + shared explanations.
"""
metadata_list = {}
explanation_lines = []
output_answers = raw_response.split("\n")[0].split(", ")
explanation_lines = [x for x in raw_response.split("\n")[1:] if x.strip()]
print("raw explanation line which split by new line: ", explanation_lines)
if len(explanation_lines) == 1:
if len(explanation_lines[0].split(". ")) > len(explanation_lines):
explanation_lines = [x for x in explanation_lines[0].split(". ") if x.strip()]
print("explain line split by dot: ", explanation_lines)
output_formats = output_format_str.split(", ")
explain = ""
# assign output format to its output answer and explanation
if output_format_str:
outputs = output_format_str.split(", ")
for o in range(len(outputs)):
output = outputs[o]
metadata_list[output] = {"answer":"",
output+"_explanation":""}
# assign output answers
if o < len(output_answers):
# check if output_format unexpectedly in the answer such as:
#country_name: Europe, modern/ancient: modern
try:
if ": " in output_answers[o]:
output_answers[o] = output_answers[o].split(": ")[1]
except:
pass
# Europe, modern
metadata_list[output]["answer"] = output_answers[o]
if "unknown" in metadata_list[output]["answer"].lower():
metadata_list[output]["answer"] = "unknown"
else:
metadata_list[output]["answer"] = "unknown"
# assign explanations
if metadata_list[output]["answer"] != "unknown":
if explanation_lines:
explain = explanation_lines.pop(0)
metadata_list[output][output+"_explanation"] = explain
else:
metadata_list[output][output+"_explanation"] = "unknown"
return metadata_list
def merge_metadata_outputs(metadata_list):
"""
Merge a list of metadata dicts into one, combining differing values with 'or'.
Assumes all dicts have the same keys.
"""
if not metadata_list:
return {}
merged = {}
keys = metadata_list[0].keys()
for key in keys:
values = [md[key] for md in metadata_list if key in md]
unique_values = list(dict.fromkeys(values)) # preserve order, remove dupes
if "unknown" in unique_values:
unique_values.pop(unique_values.index("unknown"))
if len(unique_values) == 1:
merged[key] = unique_values[0]
else:
merged[key] = " or ".join(unique_values)
return merged
def query_document_info(query_word, alternative_query_word, metadata, master_structured_lookup, faiss_index, document_chunks, llm_api_function, chunk=None, all_output=None, model_ai=None):
"""
Queries the document using a hybrid approach:
1. Local structured lookup (fast, cheap, accurate for known patterns).
2. RAG with semantic search and LLM (general, flexible, cost-optimized).
"""
if model_ai:
if model_ai == "gemini-1.5-flash-latest":
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
PRICE_PER_1K_INPUT_LLM = 0.000075 # $0.075 per 1M tokens
PRICE_PER_1K_OUTPUT_LLM = 0.0003 # $0.30 per 1M tokens
PRICE_PER_1K_EMBEDDING_INPUT = 0.000025 # $0.025 per 1M tokens
global_llm_model_for_counting_tokens = genai.GenerativeModel("gemini-1.5-flash-latest")#('gemini-1.5-flash-latest')
else:
genai.configure(api_key=os.getenv("GOOGLE_API_KEY_BACKUP"))
# Gemini 2.5 Flash-Lite pricing per 1,000 tokens
PRICE_PER_1K_INPUT_LLM = 0.00010 # $0.10 per 1M input tokens
PRICE_PER_1K_OUTPUT_LLM = 0.00040 # $0.40 per 1M output tokens
# Embedding-001 pricing per 1,000 input tokens
PRICE_PER_1K_EMBEDDING_INPUT = 0.00015 # $0.15 per 1M input tokens
global_llm_model_for_counting_tokens = genai.GenerativeModel("gemini-2.5-flash-lite")#('gemini-1.5-flash-latest')
if metadata:
extracted_country, extracted_specific_location, extracted_ethnicity, extracted_type = metadata["country"], metadata["specific_location"], metadata["ethnicity"], metadata["sample_type"]
extracted_col_date, extracted_iso, extracted_title, extracted_features = metadata["collection_date"], metadata["isolate"], metadata["title"], metadata["all_features"]
else:
extracted_country, extracted_specific_location, extracted_ethnicity, extracted_type = "unknown", "unknown", "unknown", "unknown"
extracted_col_date, extracted_iso, extracted_title = "unknown", "unknown", "unknown"
# --- NEW: Pre-process alternative_query_word to remove '.X' suffix if present ---
if alternative_query_word:
alternative_query_word_cleaned = alternative_query_word.split('.')[0]
else:
alternative_query_word_cleaned = alternative_query_word
country_explanation, sample_type_explanation = None, None
# Use the consolidated final_structured_entries for direct lookup
final_structured_entries = master_structured_lookup.get('final_structured_entries', {})
document_title = master_structured_lookup.get('document_title', 'Unknown Document Title') # Retrieve document title
# Default values for all extracted fields. These will be updated.
method_used = 'unknown' # Will be updated based on the method that yields a result
population_code_from_sl = 'unknown' # To pass to RAG prompt if available
total_query_cost = 0
# Attempt 1: Try primary query_word (e.g., isolate name) with structured lookup
try:
print("try attempt 1 in model query")
structured_info = final_structured_entries.get(query_word.upper())
if structured_info:
if extracted_country == 'unknown':
extracted_country = structured_info['country']
if extracted_type == 'unknown':
extracted_type = structured_info['type']
# if extracted_ethnicity == 'unknown':
# extracted_ethnicity = structured_info.get('ethnicity', 'unknown') # Get ethnicity from structured lookup
# if extracted_specific_location == 'unknown':
# extracted_specific_location = structured_info.get('specific_location', 'unknown') # Get specific_location from structured lookup
population_code_from_sl = structured_info['population_code']
method_used = "structured_lookup_direct"
print(f"'{query_word}' found in structured lookup (direct match).")
except:
print("pass attempt 1 in model query")
pass
# Attempt 2: Try primary query_word with heuristic range lookup if direct fails (only if not already resolved)
try:
print("try attempt 2 in model query")
if method_used == 'unknown':
query_prefix, query_num_str = _parse_individual_code_parts(query_word)
if query_prefix is not None and query_num_str is not None:
try: query_num = int(query_num_str)
except ValueError: query_num = None
if query_num is not None:
query_prefix_upper = query_prefix.upper()
contiguous_ranges = master_structured_lookup.get('contiguous_ranges', defaultdict(list))
pop_code_to_country = master_structured_lookup.get('pop_code_to_country', {})
pop_code_to_ethnicity = master_structured_lookup.get('pop_code_to_ethnicity', {})
pop_code_to_specific_loc = master_structured_lookup.get('pop_code_to_specific_loc', {})
if query_prefix_upper in contiguous_ranges:
for start_num, end_num, pop_code_for_range in contiguous_ranges[query_prefix_upper]:
if start_num <= query_num <= end_num:
country_from_heuristic = pop_code_to_country.get(pop_code_for_range, 'unknown')
if country_from_heuristic != 'unknown':
if extracted_country == 'unknown':
extracted_country = country_from_heuristic
if extracted_type == 'unknown':
extracted_type = 'modern'
# if extracted_ethnicity == 'unknown':
# extracted_ethnicity = pop_code_to_ethnicity.get(pop_code_for_range, 'unknown')
# if extracted_specific_location == 'unknown':
# extracted_specific_location = pop_code_to_specific_loc.get(pop_code_for_range, 'unknown')
population_code_from_sl = pop_code_for_range
method_used = "structured_lookup_heuristic_range_match"
print(f"'{query_word}' not direct. Heuristic: Falls within range {query_prefix_upper}{start_num}-{query_prefix_upper}{end_num}.")
break
else:
print(f"'{query_word}' heuristic match found, but country unknown. Will fall to RAG below.")
except:
print("pass attempt 2 in model query")
pass
# Attempt 3: If primary query_word failed all structured lookups, try alternative_query_word (cleaned)
try:
print("try attempt 3 in model query")
if method_used == 'unknown' and alternative_query_word_cleaned and alternative_query_word_cleaned != query_word:
print(f"'{query_word}' not found in structured (or heuristic). Trying alternative '{alternative_query_word_cleaned}'.")
# Try direct lookup for alternative word
structured_info_alt = final_structured_entries.get(alternative_query_word_cleaned.upper())
if structured_info_alt:
if extracted_country == 'unknown':
extracted_country = structured_info_alt['country']
if extracted_type == 'unknown':
extracted_type = structured_info_alt['type']
# if extracted_ethnicity == 'unknown':
# extracted_ethnicity = structured_info_alt.get('ethnicity', 'unknown')
# if extracted_specific_location == 'unknown':
# extracted_specific_location = structured_info_alt.get('specific_location', 'unknown')
population_code_from_sl = structured_info_alt['population_code']
method_used = "structured_lookup_alt_direct"
print(f"Alternative '{alternative_query_word_cleaned}' found in structured lookup (direct match).")
else:
# Try heuristic lookup for alternative word
alt_prefix, alt_num_str = _parse_individual_code_parts(alternative_query_word_cleaned)
if alt_prefix is not None and alt_num_str is not None:
try: alt_num = int(alt_num_str)
except ValueError: alt_num = None
if alt_num is not None:
alt_prefix_upper = alt_prefix.upper()
contiguous_ranges = master_structured_lookup.get('contiguous_ranges', defaultdict(list))
pop_code_to_country = master_structured_lookup.get('pop_code_to_country', {})
pop_code_to_ethnicity = master_structured_lookup.get('pop_code_to_ethnicity', {})
pop_code_to_specific_loc = master_structured_lookup.get('pop_code_to_specific_loc', {})
if alt_prefix_upper in contiguous_ranges:
for start_num, end_num, pop_code_for_range in contiguous_ranges[alt_prefix_upper]:
if start_num <= alt_num <= end_num:
country_from_heuristic_alt = pop_code_to_country.get(pop_code_for_range, 'unknown')
if country_from_heuristic_alt != 'unknown':
if extracted_country == 'unknown':
extracted_country = country_from_heuristic_alt
if extracted_type == 'unknown':
extracted_type = 'modern'
# if extracted_ethnicity == 'unknown':
# extracted_ethnicity = pop_code_to_ethnicity.get(pop_code_for_range, 'unknown')
# if extracted_specific_location == 'unknown':
# extracted_specific_location = pop_code_to_specific_loc.get(pop_code_for_range, 'unknown')
population_code_from_sl = pop_code_for_range
method_used = "structured_lookup_alt_heuristic_range_match"
break
else:
print(f"Alternative '{alternative_query_word_cleaned}' heuristic match found, but country unknown. Will fall to RAG below.")
except:
print("pass attempt 3 in model query")
pass
# use the context_for_llm to detect present_ancient before using llm model
# retrieved_chunks_text = []
# if document_chunks:
# for idx in range(len(document_chunks)):
# retrieved_chunks_text.append(document_chunks[idx])
# context_for_llm = ""
# all_context = "\n".join(retrieved_chunks_text) #
# listOfcontexts = {"chunk": chunk,
# "all_output": all_output,
# "document_chunk": all_context}
# label, context_for_llm = chooseContextLLM(listOfcontexts, query_word)
# if not context_for_llm:
# label, context_for_llm = chooseContextLLM(listOfcontexts, alternative_query_word_cleaned)
# if not context_for_llm:
# context_for_llm = "Collection_date: " + col_date +". Isolate: " + iso + ". Title: " + title + ". Features: " + extracted_features
# if context_for_llm:
# extracted_type, explain = mtdna_classifier.detect_ancient_flag(context_for_llm)
# extracted_type = extracted_type.lower()
# sample_type_explanation = explain
# 5. Execute RAG if needed (either full RAG or targeted RAG for missing fields)
# Determine if a RAG call is necessary
# run_rag = (extracted_country == 'unknown' or extracted_type == 'unknown')# or \
# #extracted_ethnicity == 'unknown' or extracted_specific_location == 'unknown')
run_rag = True
if run_rag:
print("try run rag")
# Determine the phrase for LLM query
rag_query_phrase = f"'{query_word}'"
if alternative_query_word_cleaned and alternative_query_word_cleaned != query_word:
rag_query_phrase += f" or its alternative word '{alternative_query_word_cleaned}'"
# Construct a more specific semantic query phrase for embedding if structured info is available
semantic_query_for_embedding = rag_query_phrase # Default
# if extracted_country != 'unknown': # If country is known from structured lookup (for targeted RAG)
# if population_code_from_sl != 'unknown':
# semantic_query_for_embedding = f"ethnicity and specific location for {query_word} population {population_code_from_sl} in {extracted_country}"
# else: # If pop_code not found in structured, still use country hint
# semantic_query_for_embedding = f"ethnicity and specific location for {query_word} in {extracted_country}"
# print(f" DEBUG: Semantic query for embedding: '{semantic_query_for_embedding}'")
# Determine fields to ask LLM for and output format based on what's known/needed
prompt_instruction_prefix = ""
output_format_str = ""
# Determine if it's a full RAG or targeted RAG scenario based on what's already extracted
is_full_rag_scenario = True#(extracted_country == 'unknown')
if is_full_rag_scenario: # Full RAG scenario
output_format_str = "country_name, modern/ancient/unknown"#, ethnicity, specific_location/unknown"
method_used = "rag_llm"
print(f"Proceeding to FULL RAG for {rag_query_phrase}.")
# else: # Targeted RAG scenario (country/type already known, need ethnicity/specific_location)
# if extracted_type == "unknown":
# prompt_instruction_prefix = (
# f"I already know the country is {extracted_country}. "
# f"{f'The population code is {population_code_from_sl}. ' if population_code_from_sl != 'unknown' else ''}"
# )
# #output_format_str = "modern/ancient/unknown, ethnicity, specific_location/unknown"
# output_format_str = "modern/ancient/unknown"
# # else:
# # prompt_instruction_prefix = (
# # f"I already know the country is {extracted_country} and the sample type is {extracted_type}. "
# # f"{f'The population code is {population_code_from_sl}. ' if population_code_from_sl != 'unknown' else ''}"
# # )
# # output_format_str = "ethnicity, specific_location/unknown"
# method_used = "hybrid_sl_rag"
# print(f"Proceeding to TARGETED RAG for {rag_query_phrase}.")
# Calculate embedding cost for the primary query word
current_embedding_cost = 0
try:
query_embedding_vector = get_embedding(semantic_query_for_embedding, task_type="RETRIEVAL_QUERY")
query_embedding_tokens = global_llm_model_for_counting_tokens.count_tokens(semantic_query_for_embedding).total_tokens
current_embedding_cost += (query_embedding_tokens / 1000) * PRICE_PER_1K_EMBEDDING_INPUT
print(f" DEBUG: Query embedding tokens (for '{semantic_query_for_embedding}'): {query_embedding_tokens}, cost: ${current_embedding_cost:.6f}")
if alternative_query_word_cleaned and alternative_query_word_cleaned != query_word:
alt_embedding_vector = get_embedding(alternative_query_word_cleaned, task_type="RETRIEVAL_QUERY")
alt_embedding_tokens = global_llm_model_for_counting_tokens.count_tokens(alternative_query_word_cleaned).total_tokens
current_embedding_cost += (alt_embedding_tokens / 1000) * PRICE_PER_1K_EMBEDDING_INPUT
print(f" DEBUG: Alternative query ('{alternative_query_word_cleaned}') embedding tokens: {alt_embedding_tokens}, cost: ${current_embedding_cost:.6f}")
except Exception as e:
print(f"Error getting query embedding for RAG: {e}")
return extracted_country, extracted_type, "embedding_failed", extracted_ethnicity, extracted_specific_location, total_query_cost
if query_embedding_vector is None or query_embedding_vector.shape[0] == 0:
return extracted_country, extracted_type, "embedding_failed", extracted_ethnicity, extracted_specific_location, total_query_cost
D, I = faiss_index.search(np.array([query_embedding_vector]), 4)
retrieved_chunks_text = []
for idx in I[0]:
if 0 <= idx < len(document_chunks):
retrieved_chunks_text.append(document_chunks[idx])
context_for_llm = ""
all_context = "\n".join(retrieved_chunks_text) #
listOfcontexts = {"chunk": chunk,
"all_output": all_output,
"document_chunk": all_context}
label, context_for_llm = chooseContextLLM(listOfcontexts, query_word)
if not context_for_llm:
label, context_for_llm = chooseContextLLM(listOfcontexts, alternative_query_word_cleaned)
if not context_for_llm:
context_for_llm = "Collection_date: " + col_date +". Isolate: " + iso + ". Title: " + title + ". Features: " + extracted_features
#print("context for llm: ", label)
# prompt_for_llm = (
# f"{prompt_instruction_prefix}"
# f"Given the following text snippets, analyze the entity/concept {rag_query_phrase} or the mitochondrial DNA sample in general if these specific identifiers are not explicitly found. "
# f"Identify its primary associated country/geographic location. "
# f"Also, determine if the genetic sample or individual mentioned is from a 'modern' (present-day living individual) "
# f"or 'ancient' (e.g., prehistoric remains, archaeological sample) source. "
# f"If the text does not mention whether the sample is ancient or modern, assume the sample is modern unless otherwise explicitly described as ancient or archaeological. "
# f"Additionally, extract its ethnicity and a more specific location (city/district level) within the predicted country. "
# f"If any information is not explicitly present in the provided text snippets, state 'unknown' for that specific piece of information. "
# f"Provide only the country, sample type, ethnicity, and specific location, do not add extra explanations.\n\n"
# f"Text Snippets:\n{context_for_llm}\n\n"
# f"Output Format: {output_format_str}"
# )
if len(context_for_llm) > 1000*1000:
context_for_llm = context_for_llm[:900000]
# fix the prompt better:
# firstly clarify more by saying which type of organism, prioritize homo sapiens
features = metadata["all_features"]
organism = "general"
if features != "unknown":
if "organism" in features:
try:
organism = features.split("organism: ")[1].split("\n")[0]
except:
organism = features.replace("\n","; ")
explain_list = "country or sample type (modern/ancient)" #or ethnicity or specific location (province/city)"
# prompt_for_llm = (
# f"{prompt_instruction_prefix}"
# f"Given the following text snippets, analyze the entity/concept {rag_query_phrase} or the mitochondrial DNA sample in general if these specific identifiers are not explicitly found. "
# f"Identify its primary associated country/geographic location. "
# f"Also, determine if the genetic sample or individual mentioned is from a 'modern' (present-day living individual) "
# f"or 'ancient' (e.g., prehistoric remains, archaeological sample) source. "
# f"If the text does not mention whether the sample is ancient or modern, assume the sample is modern unless otherwise explicitly described as ancient or archaeological. "
# f"Provide only {output_format_str}. "
# f"If any information is not explicitly present in the provided text snippets, state 'unknown' for that specific piece of information. "
# f"If the country or sample type (modern/ancient) is not 'unknown', write 1 sentence after the output explaining how you inferred it from the text (one sentence for each)."
# f"\n\nText Snippets:\n{context_for_llm}\n\n"
# f"Output Format: {output_format_str}"
# )
# prompt_for_llm = (
# f"{prompt_instruction_prefix}"
# f"Given the following text snippets, analyze the entity/concept {rag_query_phrase} or the mitochondrial DNA sample in {organism} if these specific identifiers are not explicitly found. "
# f"Identify its primary associated country/geographic location. "
# f"Also, determine if the genetic sample or individual mentioned is from a 'modern' (present-day living individual) "
# f"or 'ancient' (e.g., prehistoric remains, archaeological sample) source. "
# f"If the text does not mention whether the sample is ancient or modern, assume the sample is modern unless otherwise explicitly described as ancient or archaeological. "
# f"Provide only {output_format_str}. "
# f"If any information is not explicitly present in the provided text snippets, state 'unknown' for that specific piece of information. "
# f"If the {explain_list} is not 'unknown', write 1 sentence after the output explaining how you inferred it from the text (one sentence for each)."
# f"\n\nText Snippets:\n{context_for_llm}\n\n"
# f"Output Format: {output_format_str}"
# )
# prompt_for_llm = (
# f"{prompt_instruction_prefix}"
# f"Given the following text snippets, analyze the entity/concept {rag_query_phrase} "
# f"or the mitochondrial DNA sample in {organism} if these identifiers are not explicitly found. "
# f"Identify its **primary associated geographic location**, preferring the most specific available: "
# f"first try to determine the exact country; if no country is explicitly mentioned, then provide "
# f"the next most specific region, continent, island, or other clear geographic area mentioned. "
# f"If no geographic clues at all are present, state 'unknown' for location. "
# f"Also, determine if the genetic sample is from a 'modern' (present-day living individual) "
# f"or 'ancient' (prehistoric/archaeological) source. "
# f"If the text does not specify ancient or archaeological context, assume 'modern'. "
# f"Provide only {output_format_str}. "
# f"If any information is not explicitly present, use the fallback rules above before defaulting to 'unknown'. "
# f"For each non-'unknown' field in {explain_list}, write one sentence explaining how it was inferred from the text (one sentence for each)."
# f"\n\nText Snippets:\n{context_for_llm}\n\n"
# f"Output Format: {output_format_str}"
# )
prompt_for_llm = (
f"{prompt_instruction_prefix}"
f"Given the following text snippets, analyze the entity/concept {rag_query_phrase} "
f"or the mitochondrial DNA sample in {organism} if these identifiers are not explicitly found. "
f"Identify its **primary associated geographic location**, preferring the most specific available: "
f"first try to determine the exact country; if no country is explicitly mentioned, then provide "
f"the next most specific region, continent, island, or other clear geographic area mentioned. "
f"If no geographic clues at all are present, state 'unknown' for location. "
f"Also, determine if the genetic sample is from a 'modern' (present-day living individual) "
f"or 'ancient' (prehistoric/archaeological) source. "
f"If the text does not specify ancient or archaeological context, assume 'modern'. "
f"Provide only {output_format_str}. "
f"If any information is not explicitly present, use the fallback rules above before defaulting to 'unknown'. "
f"For each non-'unknown' field in {explain_list}, write one sentence explaining how it was inferred from the text "
f"(one sentence for each). "
f"Format your answer so that:\n"
f"1. The **first line** contains only the {output_format_str} answer.\n"
f"2. The **second line onward** contains the explanations.\n"
f"\nText Snippets:\n{context_for_llm}\n\n"
f"Output Format Example:\nChina, modern, Daur, Heilongjiang province.\n"
f"The text explicitly states \"chinese Daur ethnic group in Heilongjiang province\", indicating the country, "
f"the ethnicity, and the specific province. The study is published in a journal, implying research on living "
f"individuals, hence modern."
)
if model_ai:
print("back up to ", model_ai)
llm_response_text, model_instance = call_llm_api(prompt_for_llm, model=model_ai)
else:
print("still 2.5 flash gemini")
llm_response_text, model_instance = call_llm_api(prompt_for_llm)
print("\n--- DEBUG INFO FOR RAG ---")
print("Retrieved Context Sent to LLM (first 500 chars):")
print(context_for_llm[:500] + "..." if len(context_for_llm) > 500 else context_for_llm)
print("\nRaw LLM Response:")
print(llm_response_text)
print("--- END DEBUG INFO ---")
llm_cost = 0
if model_instance:
try:
input_llm_tokens = global_llm_model_for_counting_tokens.count_tokens(prompt_for_llm).total_tokens
output_llm_tokens = global_llm_model_for_counting_tokens.count_tokens(llm_response_text).total_tokens
print(f" DEBUG: LLM Input tokens: {input_llm_tokens}")
print(f" DEBUG: LLM Output tokens: {output_llm_tokens}")
llm_cost = (input_llm_tokens / 1000) * PRICE_PER_1K_INPUT_LLM + \
(output_llm_tokens / 1000) * PRICE_PER_1K_OUTPUT_LLM
print(f" DEBUG: Estimated LLM cost: ${llm_cost:.6f}")
except Exception as e:
print(f" DEBUG: Error counting LLM tokens: {e}")
llm_cost = 0
total_query_cost += current_embedding_cost + llm_cost
print(f" DEBUG: Total estimated cost for this RAG query: ${total_query_cost:.6f}")
# Parse the LLM's response based on the Output Format actually used
# if output_format_str == "ethnicity, specific_location/unknown": # Targeted RAG output
# extracted_ethnicity,extracted_specific_location = clean_llm_output(llm_response_text, output_format_str)
# elif output_format_str == "modern/ancient/unknown, ethnicity, specific_location/unknown":
# extracted_type, extracted_ethnicity,extracted_specific_location=clean_llm_output(llm_response_text, output_format_str)
# else: # Full RAG output (country, type, ethnicity, specific_location)
# extracted_country,extracted_type, extracted_ethnicity,extracted_specific_location=clean_llm_output(llm_response_text, output_format_str)
metadata_list = parse_multi_sample_llm_output(llm_response_text, output_format_str)
# merge_metadata = merge_metadata_outputs(metadata_list)
# if output_format_str == "country_name, modern/ancient/unknown":
# extracted_country, extracted_type = merge_metadata["country"], merge_metadata["sample_type"]
# country_explanation,sample_type_explanation = merge_metadata["country_explanation"], merge_metadata["sample_type_explanation"]
# elif output_format_str == "modern/ancient/unknown":
# extracted_type = merge_metadata["sample_type"]
# sample_type_explanation = merge_metadata["sample_type_explanation"]
# for the output_format that is not default
if output_format_str == "country_name, modern/ancient/unknown":
outputs = output_format_str.split(", ")
extracted_country, extracted_type = metadata_list[outputs[0]]["answer"], metadata_list[outputs[1]]["answer"]
country_explanation,sample_type_explanation = metadata_list[outputs[0]][outputs[0]+"_explanation"], metadata_list[outputs[1]][outputs[1]+"_explanation"]
# extracted_ethnicity, extracted_specific_location = metadata_list[outputs[2]]["answer"], metadata_list[outputs[3]]["answer"]
# ethnicity_explanation, specific_loc_explanation = metadata_list[outputs[2]][outputs[2]+"_explanation"], metadata_list[outputs[3]][outputs[3]+"_explanation"]
# 6. Optional: Second LLM call for specific_location from general knowledge if still unknown
# if extracted_specific_location == 'unknown':
# # Check if we have enough info to ask general knowledge LLM
# if extracted_country != 'unknown' and extracted_ethnicity != 'unknown':
# print(f" DEBUG: Specific location still unknown. Querying general knowledge LLM from '{extracted_ethnicity}' and '{extracted_country}'.")
# general_knowledge_prompt = (
# f"Based on general knowledge, what is a highly specific location (city or district) "
# f"associated with the ethnicity '{extracted_ethnicity}' in '{extracted_country}'? "
# f"Consider the context of scientific studies on human genetics, if known. "
# f"If no common specific location is known, state 'unknown'. "
# f"Provide only the city or district name, or 'unknown'."
# )
# general_llm_response, general_llm_model_instance = call_llm_api(general_knowledge_prompt, model_name='gemini-1.5-flash-latest')
# if general_llm_response and general_llm_response.lower().strip() != 'unknown':
# extracted_specific_location = general_llm_response.strip() + " (predicted from general knowledge)"
# # Add cost of this second LLM call
# if general_llm_model_instance:
# try:
# gk_input_tokens = general_llm_model_instance.count_tokens(general_knowledge_prompt).total_tokens
# gk_output_tokens = general_llm_model_instance.count_tokens(general_llm_response).total_tokens
# gk_cost = (gk_input_tokens / 1000) * PRICE_PER_1K_INPUT_LLM + \
# (gk_output_tokens / 1000) * PRICE_PER_1K_OUTPUT_LLM
# print(f" DEBUG: General Knowledge LLM cost to predict specific location alone: ${gk_cost:.6f}")
# total_query_cost += gk_cost # Accumulate cost
# except Exception as e:
# print(f" DEBUG: Error counting GK LLM tokens: {e}")
# else:
# print(" DEBUG: General knowledge LLM returned unknown or empty for specific location.")
# # 6. Optional: Second LLM call for ethnicity from general knowledge if still unknown
# if extracted_ethnicity == 'unknown':
# # Check if we have enough info to ask general knowledge LLM
# if extracted_country != 'unknown' and extracted_specific_location != 'unknown':
# print(f" DEBUG: Ethnicity still unknown. Querying general knowledge LLM from '{extracted_specific_location}' and '{extracted_country}'.")
# general_knowledge_prompt = (
# f"Based on general knowledge, what is a highly ethnicity (population) "
# f"associated with the specific location '{extracted_specific_location}' in '{extracted_country}'? "
# f"Consider the context of scientific studies on human genetics, if known. "
# f"If no common ethnicity is known, state 'unknown'. "
# f"Provide only the ethnicity or popluation name, or 'unknown'."
# )
# general_llm_response, general_llm_model_instance = call_llm_api(general_knowledge_prompt, model_name='gemini-1.5-flash-latest')
# if general_llm_response and general_llm_response.lower().strip() != 'unknown':
# extracted_ethnicity = general_llm_response.strip() + " (predicted from general knowledge)"
# # Add cost of this second LLM call
# if general_llm_model_instance:
# try:
# gk_input_tokens = general_llm_model_instance.count_tokens(general_knowledge_prompt).total_tokens
# gk_output_tokens = general_llm_model_instance.count_tokens(general_llm_response).total_tokens
# gk_cost = (gk_input_tokens / 1000) * PRICE_PER_1K_INPUT_LLM + \
# (gk_output_tokens / 1000) * PRICE_PER_1K_OUTPUT_LLM
# print(f" DEBUG: General Knowledge LLM cost to predict ethnicity alone: ${gk_cost:.6f}")
# total_query_cost += gk_cost # Accumulate cost
# except Exception as e:
# print(f" DEBUG: Error counting GK LLM tokens: {e}")
# else:
# print(" DEBUG: General knowledge LLM returned unknown or empty for ethnicity.")
#return extracted_country, extracted_type, method_used, extracted_ethnicity, extracted_specific_location, total_query_cost
return extracted_country, extracted_type, method_used, country_explanation, sample_type_explanation, total_query_cost