AgaMiko's picture
Update app.py
52f8d54
raw
history blame
2.24 kB
from transformers import T5ForConditionalGeneration, T5Tokenizer
import streamlit as st
from PIL import Image
import os
@st.cache(allow_output_mutation=True)
def load_model_cache():
auth_token = os.environ.get("TOKEN_FROM_SECRET") or True
tokenizer_pl = T5Tokenizer.from_pretrained(
"Voicelab/vlt5-base-rfc-v1_2", use_auth_token=auth_token
)
model_pl = T5ForConditionalGeneration.from_pretrained(
"Voicelab/vlt5-base-rfc-v1_2", use_auth_token=auth_token
)
return tokenizer_pl, model_pl
img_full = Image.open("images/vl-logo-nlp-blue.png")
img_short = Image.open("images/sVL-NLP-short.png")
img_favicon = Image.open("images/favicon_vl.png")
max_length: int = 5000
cache_size: int = 100
st.set_page_config(
page_title="DEMO - Reason for Contact detection",
page_icon=img_favicon,
initial_sidebar_state="expanded",
)
tokenizer_en, model_en, tokenizer_pl, model_pl = load_model_cache()
def get_predictions(text):
input_ids = tokenizer_pl(text, return_tensors="pt", truncation=True).input_ids
output = model_pl.generate(
input_ids,
no_repeat_ngram_size=1,
num_beams=3,
num_beam_groups=3,
min_length=10,
max_length=100,
)
predicted_rfc = tokenizer_pl.decode(output[0], skip_special_tokens=True)
return predicted_rfc
def trim_length():
if len(st.session_state["input"]) > max_length:
st.session_state["input"] = st.session_state["input"][:max_length]
if __name__ == "__main__":
st.sidebar.image(img_short)
st.image(img_full)
st.title("VLT5 - RfC generation")
generated_keywords = ""
user_input = st.text_area(
label=f"Input text (max {max_length} characters)",
value="",
height=300,
on_change=trim_length,
key="input",
)
language = st.sidebar.title("Model settings")
language = st.sidebar.radio(
"Select model to test",
[
"Polish",
],
)
result = st.button("Find reason for contact")
if result:
generated_rfc = get_predictions(text=user_input)
st.text_area("Reason", generated_rfc)
print(f"Input: {user_input} ---> Reason for contact: {generated_rfc}")