MiniGPT4-video / minigpt4 /datasets /builders /image_text_pair_builder.py
fffiloni's picture
Upload 164 files
2ada650 verified
raw
history blame
32.1 kB
import os
import logging
import warnings
from minigpt4.common.registry import registry
from minigpt4.datasets.builders.base_dataset_builder import BaseDatasetBuilder
from minigpt4.datasets.datasets.laion_dataset import LaionDataset
from minigpt4.datasets.datasets.vg_dataset import ReferVisualGenomeDataset
from minigpt4.datasets.datasets.open_images import OpenImageDataset,OpenBboxToObjectDataset
from minigpt4.datasets.datasets.locna_dataset import LocNaCOCODataset
from minigpt4.datasets.datasets.llava_dataset import LlavaDetailDataset, LlavaReasonDataset, LlavaConversationDataset
from minigpt4.datasets.datasets.lvis_dataset import LVISBBOXDataset,LVISBboxToObjectDataset
from minigpt4.datasets.datasets.text_caps import TextCapBboxToObjectDataset, TextCapDataset
from minigpt4.datasets.datasets.coco_caption import COCOCapDataset,COCOCapEvalDataset
from minigpt4.datasets.datasets.coyo_dataset import COYOCaptionWDSDataset,COYOBoxToPhraseWDSDataset,COYOPhraseToBoxWDSDataset
# , COYOBBoxPhraseDataset
from minigpt4.datasets.datasets.grounded_detailed_image_caption_dataset import GroundedDetailDataset
from minigpt4.datasets.datasets.reasoning_dataset import ReasoningDataset
from minigpt4.datasets.datasets.video_datasets import CMDVideoDataset, WebVidDataset,VideoChatGPTDataset,Video_validation_Dataset
from minigpt4.datasets.datasets.cot import CoTDataset
from minigpt4.datasets.datasets.unnatural_instruction import UnnaturalDataset
from minigpt4.datasets.datasets.caption_reasoning import CaptionReasonDataset
from minigpt4.datasets.datasets.aok_vqa_reasoning_datasets import AOKVQAReasoningDataset
from minigpt4.datasets.datasets.paint_dataset import PaintPTCOCODataset, PaintRLCOCODataset, PaintPixelCOCODataset, SegReferCOCODataset, PaintLanRLOpaqueCOCODataset
from minigpt4.datasets.datasets.nav_dataset import NavR2RDataset
@registry.register_builder("yifan_reasoning")
class LlavaDetailBuilder(BaseDatasetBuilder):
train_dataset_cls = AOKVQAReasoningDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/aokvqa_reasoning/defaults.yaml",
}
def build_datasets(self):
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
logging.info("Building datasets...")
self.build_processors()
build_info = self.config.build_info
datasets = dict()
# create datasets
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors["train"],
text_processor=self.text_processors["train"],
ann_paths=build_info.ann_path,
vis_root=build_info.image_path,
)
return datasets
@registry.register_builder("caption_reasoning")
class CaptionReasoningBuilder(BaseDatasetBuilder):
train_dataset_cls = CaptionReasonDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/mm_reasoning/mm_reasoning.yaml",
}
def build_datasets(self):
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
logging.info("Building datasets...")
self.build_processors()
build_info = self.config.build_info
datasets = dict()
# create datasets
dataset_cls = self.train_dataset_cls
# print("ann_path",build_info.ann_path)
# print("vis root",build_info.image_path )
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors['train'],
text_processor=self.text_processors['train'],
ann_path=build_info.ann_path,
vis_root=build_info.image_path,
)
return datasets
@registry.register_builder("unnatural_instruction")
class UnnaturalInstructionBuilder(BaseDatasetBuilder):
train_dataset_cls = UnnaturalDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/nlp/unnatural_instruction.yaml",
}
def build_datasets(self):
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
logging.info("Building datasets...")
self.build_processors()
build_info = self.config.build_info
datasets = dict()
# create datasets
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
text_processor=self.text_processors["train"],
ann_path=build_info.ann_path,
)
return datasets
@registry.register_builder("cot")
class CoTBuilder(BaseDatasetBuilder):
train_dataset_cls = CoTDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/nlp/cot.yaml",
}
def build_datasets(self):
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
logging.info("Building datasets...")
self.build_processors()
build_info = self.config.build_info
datasets = dict()
# create datasets
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
text_processor=self.text_processors["train"],
ann_path=build_info.ann_path,
)
return datasets
@registry.register_builder("coco_caption")
class COCOCapBuilder(BaseDatasetBuilder):
train_dataset_cls = COCOCapDataset
eval_dataset_cls = COCOCapEvalDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/coco/caption.yaml",
"eval": "configs/datasets/coco/caption.yaml",
}
@registry.register_builder("open_images")
class OpenImageBuilder(BaseDatasetBuilder):
train_dataset_cls = OpenImageDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/open_images/default.yaml"}
def _download_ann(self):
pass
def _download_vis(self):
pass
def build(self):
self.build_processors()
build_info = self.config.build_info
datasets = dict()
split = "train"
# create datasets
# [NOTE] return inner_datasets (wds.DataPipeline)
dataset_cls = self.train_dataset_cls
datasets[split] = dataset_cls(
vis_processor=self.vis_processors[split],
text_processor=self.text_processors[split],
location=build_info.storage,
).inner_dataset
return datasets
@registry.register_builder("open_images_bbox_to_object")
class OpenBboxToObjectuilder(BaseDatasetBuilder):
train_dataset_cls = OpenBboxToObjectDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/open_images/default_bbox.yaml"}
def _download_ann(self):
pass
def _download_vis(self):
pass
def build(self):
self.build_processors()
build_info = self.config.build_info
datasets = dict()
split = "train"
# create datasets
# [NOTE] return inner_datasets (wds.DataPipeline)
dataset_cls = self.train_dataset_cls
datasets[split] = dataset_cls(
vis_processor=self.vis_processors[split],
text_processor=self.text_processors[split],
location=build_info.storage,
).inner_dataset
return datasets
@registry.register_builder("lvis_images_bbox")
class LVISBBOxBuilder(BaseDatasetBuilder):
train_dataset_cls = LVISBBOXDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/lvis/default_bbox.yaml"}
def _download_ann(self):
pass
def _download_vis(self):
pass
def build(self):
self.build_processors()
build_info = self.config.build_info
datasets = dict()
split = "train"
# create datasets
# [NOTE] return inner_datasets (wds.DataPipeline)
dataset_cls = self.train_dataset_cls
datasets[split] = dataset_cls(
vis_processor=self.vis_processors[split],
text_processor=self.text_processors[split],
location=build_info.storage,
).inner_dataset
return datasets
@registry.register_builder("lvis_bbox_to_object")
class LVISBBoxToObjectBuilder(BaseDatasetBuilder):
train_dataset_cls = LVISBboxToObjectDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/lvis/bbox_to_object.yaml"}
def _download_ann(self):
pass
def _download_vis(self):
pass
def build(self):
self.build_processors()
build_info = self.config.build_info
datasets = dict()
split = "train"
# create datasets
# [NOTE] return inner_datasets (wds.DataPipeline)
dataset_cls = self.train_dataset_cls
datasets[split] = dataset_cls(
vis_processor=self.vis_processors[split],
text_processor=self.text_processors[split],
location=build_info.storage,
).inner_dataset
return datasets
@registry.register_builder("spatial_reasoning")
class ReasoningBuilder(BaseDatasetBuilder):
train_dataset_cls = ReasoningDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/reasoning/default.yaml"}
def _download_ann(self):
pass
def _download_vis(self):
pass
def build(self):
self.build_processors()
build_info = self.config.build_info
datasets = dict()
split = "train"
# create datasets
# [NOTE] return inner_datasets (wds.DataPipeline)
dataset_cls = self.train_dataset_cls
datasets[split] = dataset_cls(
vis_processor=self.vis_processors[split],
text_processor=self.text_processors[split],
ann_path=build_info.ann_path,
vis_root=build_info.image_path,
)
return datasets
@registry.register_builder("textcaps_caption")
class TextcapCaptionBuilder(BaseDatasetBuilder):
train_dataset_cls = TextCapDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/textcaps/caption.yaml"}
def _download_ann(self):
pass
def _download_vis(self):
pass
def build(self):
self.build_processors()
build_info = self.config.build_info
datasets = dict()
split = "train"
# create datasets
# [NOTE] return inner_datasets (wds.DataPipeline)
dataset_cls = self.train_dataset_cls
datasets[split] = dataset_cls(
vis_processor=self.vis_processors[split],
text_processor=self.text_processors[split],
ann_path=build_info.ann_path,
vis_root=build_info.image_path,
)
return datasets
@registry.register_builder("coyo_caption")
class CoyoCaptionBuilder(BaseDatasetBuilder):
train_dataset_cls = COYOCaptionWDSDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/coyo/default.yaml"}
def _download_ann(self):
pass
def _download_vis(self):
pass
def build(self):
self.build_processors()
build_info = self.config.build_info
datasets = dict()
split = "train"
# create datasets
# [NOTE] return inner_datasets (wds.DataPipeline)
dataset_cls = self.train_dataset_cls
datasets[split] = dataset_cls(
vis_processor=self.vis_processors[split],
text_processor=self.text_processors[split],
location=build_info.storage,
).inner_dataset
return datasets
@registry.register_builder("coyo_bbox_phrase")
class CoyoBboxPhraseBuilder(BaseDatasetBuilder):
train_dataset_cls = COYOBoxToPhraseWDSDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/coyo/bbox_phrase.yaml"}
def _download_ann(self):
pass
def _download_vis(self):
pass
def build(self):
self.build_processors()
build_info = self.config.build_info
datasets = dict()
split = "train"
# create datasets
# [NOTE] return inner_datasets (wds.DataPipeline)
dataset_cls = self.train_dataset_cls
datasets[split] = dataset_cls(
vis_processor=self.vis_processors[split],
text_processor=self.text_processors[split],
location=build_info.storage,
).inner_dataset
return datasets
@registry.register_builder("coyo_phrase_bbox")
class CoyoBboxPhraseBuilder(BaseDatasetBuilder):
train_dataset_cls = COYOPhraseToBoxWDSDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/coyo/phrase_bbox.yaml"}
def _download_ann(self):
pass
def _download_vis(self):
pass
def build(self):
self.build_processors()
build_info = self.config.build_info
datasets = dict()
split = "train"
# create datasets
# [NOTE] return inner_datasets (wds.DataPipeline)
dataset_cls = self.train_dataset_cls
datasets[split] = dataset_cls(
vis_processor=self.vis_processors[split],
text_processor=self.text_processors[split],
location=build_info.storage,
).inner_dataset
return datasets
@registry.register_builder("textcaps_ocr")
class TextcapCaptionBuilder(BaseDatasetBuilder):
train_dataset_cls = TextCapBboxToObjectDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/textcaps/ocr.yaml"}
def _download_ann(self):
pass
def _download_vis(self):
pass
def build(self):
self.build_processors()
build_info = self.config.build_info
datasets = dict()
split = "train"
# create datasets
# [NOTE] return inner_datasets (wds.DataPipeline)
dataset_cls = self.train_dataset_cls
datasets[split] = dataset_cls(
vis_processor=self.vis_processors[split],
text_processor=self.text_processors[split],
ann_path=build_info.ann_path,
vis_root=build_info.image_path,
)
return datasets
@registry.register_builder("laion")
class LaionBuilder(BaseDatasetBuilder):
train_dataset_cls = LaionDataset
DATASET_CONFIG_DICT = {"default": "configs/datasets/laion/defaults.yaml"}
def _download_ann(self):
pass
def _download_vis(self):
pass
def build(self):
self.build_processors()
build_info = self.config.build_info
datasets = dict()
split = "train"
# create datasets
# [NOTE] return inner_datasets (wds.DataPipeline)
dataset_cls = self.train_dataset_cls
datasets[split] = dataset_cls(
vis_processor=self.vis_processors[split],
text_processor=self.text_processors[split],
location=build_info.storage,
).inner_dataset
return datasets
@registry.register_builder("locna_coco")
class LocNaCOCOBuilder(BaseDatasetBuilder):
train_dataset_cls = LocNaCOCODataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/coco/defaults_locna.yaml",
}
def build_datasets(self):
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
logging.info("Building datasets...")
self.build_processors()
build_info = self.config.build_info
ann_paths = build_info.annotations.train.storage
datasets = dict()
for ann_path in ann_paths:
if not os.path.exists(ann_path):
warnings.warn("storage path {} does not exist.".format(ann_path))
# create datasets
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors["train"],
text_processor=self.text_processors["train"],
ann_paths=ann_paths,
vis_root=build_info.images.storage,
)
return datasets
@registry.register_builder("llava_detail")
class LlavaDetailBuilder(BaseDatasetBuilder):
train_dataset_cls = LlavaDetailDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/llava/detail.yaml",
}
def build_datasets(self):
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
logging.info("Building datasets...")
self.build_processors()
build_info = self.config.build_info
datasets = dict()
# create datasets
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors["train"],
text_processor=self.text_processors["train"],
ann_path=build_info.ann_path,
vis_root=build_info.image_path,
)
return datasets
@registry.register_builder("grounded_detailed_image_caption")
class GroundedCaptionBuilder(BaseDatasetBuilder):
train_dataset_cls = GroundedDetailDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/grounded_image_caption/default.yaml",
}
def build_datasets(self):
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
logging.info("Building datasets...")
self.build_processors()
build_info = self.config.build_info
datasets = dict()
# create datasets
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors["train"],
text_processor=self.text_processors["train"],
ann_path=build_info.ann_path,
vis_root=build_info.image_path,
)
return datasets
@registry.register_builder("llava_reason")
class LlavaReasonBuilder(BaseDatasetBuilder):
train_dataset_cls = LlavaReasonDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/llava/reason.yaml",
}
def build_datasets(self):
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
logging.info("Building datasets...")
self.build_processors()
build_info = self.config.build_info
datasets = dict()
# create datasets
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors["train"],
text_processor=self.text_processors["train"],
ann_path=build_info.ann_path,
vis_root=build_info.image_path,
)
return datasets
@registry.register_builder("llava_conversation")
class LlavaReasonBuilder(BaseDatasetBuilder):
train_dataset_cls = LlavaConversationDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/llava/conversation.yaml",
}
def build_datasets(self):
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
logging.info("Building datasets...")
self.build_processors()
build_info = self.config.build_info
datasets = dict()
# create datasets
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors["train"],
text_processor=self.text_processors["train"],
ann_path=build_info.ann_path,
vis_root=build_info.image_path,
)
return datasets
class AllRefCOCOBuilder(BaseDatasetBuilder):
def build_datasets(self):
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
logging.info("Building datasets...")
self.build_processors()
build_info = self.config.build_info
image_path = build_info.image_path
ann_path = build_info.ann_path
datasets = dict()
if not os.path.exists(image_path):
warnings.warn("image path {} does not exist.".format(image_path))
if not os.path.exists(ann_path):
warnings.warn("ann path {} does not exist.".format(ann_path))
# create datasets
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors["train"],
text_processor=self.text_processors["train"],
ann_path=ann_path,
vis_root=image_path,
dataset=build_info.dataset,
splitBy=build_info.splitBy
)
return datasets
@registry.register_builder("refvg")
class RefVisualGenomeBuilder(BaseDatasetBuilder):
train_dataset_cls = ReferVisualGenomeDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/vg/ref.yaml",
}
def build_datasets(self):
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
logging.info("Building datasets...")
self.build_processors()
build_info = self.config.build_info
data_dir = build_info.data_dir
datasets = dict()
# create datasets
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors["train"],
text_processor=self.text_processors["train"],
data_dir=data_dir,
)
return datasets
@registry.register_builder("cmd_video")
class CMDVideoBuilder(BaseDatasetBuilder):
train_dataset_cls = CMDVideoDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/cmd_video/default.yaml",
}
def build_datasets(self):
# download, split, etc...
# only called on 1 GPU/TPU in distributed
self.build_processors()
build_info = self.config.build_info
datasets = dict()
# create datasets
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors["train"],
text_processor=self.text_processors["train"],
vis_root=build_info.vis_root,
ann_paths=build_info.ann_paths,
cc_path=build_info.cc_path
)
return datasets
@registry.register_builder("webvid")
class WebVidBuilder(BaseDatasetBuilder):
train_dataset_cls = WebVidDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/webvid/default.yaml",
}
def build_datasets(self):
# download, split, etc...
# only called on 1 GPU/TPU in distributed
self.build_processors()
build_info = self.config.build_info
datasets = dict()
# create datasets
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors["train"],
text_processor=self.text_processors["train"],
vis_root=build_info.vis_root,
ann_paths=build_info.ann_paths,
subtitles_path=build_info.subtitles_path,
)
return datasets
@registry.register_builder("video_chatgpt")
class VideoChatGPTBuilder(BaseDatasetBuilder):
train_dataset_cls = VideoChatGPTDataset
eval_dataset_cls=Video_validation_Dataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/video_chatgpt/default.yaml",
}
print(DATASET_CONFIG_DICT)
def build_datasets(self):
# download, split, etc...
# only called on 1 GPU/TPU in distributed
self.build_processors()
build_info = self.config.build_info
datasets = dict()
# create datasets
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors["train"],
text_processor=self.text_processors["train"],
vis_root=build_info.vis_root,
ann_paths=build_info.ann_paths,
)
return datasets
@registry.register_builder("r2r")
class NavR2RBuilder(BaseDatasetBuilder):
train_dataset_cls = NavR2RDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/nav/r2r.yaml",
}
def build_datasets(self):
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
logging.info("Building datasets...")
self.build_processors()
build_info = self.config.build_info
datasets = dict()
# create datasets
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors["train"],
text_processor=self.text_processors["train"],
data_root=build_info.data_root
)
return datasets
@registry.register_builder("paintcoco")
class PaintPTCOCOBuilder(BaseDatasetBuilder):
train_dataset_cls = PaintPTCOCODataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/paint/coco.yaml",
}
def build_datasets(self):
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
logging.info("Building datasets...")
self.build_processors()
build_info = self.config.build_info
img_root = build_info.img_root
stroke_root = build_info.stroke_root
max_step = build_info.max_step
datasets = dict()
# create datasets
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors["train"],
text_processor=self.text_processors["train"],
img_root=img_root,
stroke_root=stroke_root,
max_step=max_step
)
return datasets
class PaintRLCOCOBuilderBase(BaseDatasetBuilder):
train_dataset_cls = PaintRLCOCODataset
def build_datasets(self):
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
logging.info("Building datasets...")
self.build_processors()
build_info = self.config.build_info
img_root = build_info.img_root
stroke_root = build_info.stroke_root
max_step = build_info.max_step
single_stroke = build_info.single_stroke
datasets = dict()
# create datasets
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors["train"],
text_processor=self.text_processors["train"],
img_root=img_root,
stroke_root=stroke_root,
max_step=max_step,
single_stroke=single_stroke
)
return datasets
@registry.register_builder("paintrlcoco")
class PaintRLCOCOBuilder(PaintRLCOCOBuilderBase):
DATASET_CONFIG_DICT = {
"default": "configs/datasets/paint/rl_coco.yaml",
}
@registry.register_builder("paintrlscoco")
class PaintRLSCOCOBuilder(PaintRLCOCOBuilderBase):
DATASET_CONFIG_DICT = {
"default": "configs/datasets/paint/rls_coco.yaml",
}
@registry.register_builder("paintlanrlsococo")
class PaintLanRLOpaqueCOCOBuilder(BaseDatasetBuilder):
train_dataset_cls = PaintLanRLOpaqueCOCODataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/paint/lan_rls_o_coco.yaml",
}
def build_datasets(self):
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
logging.info("Building datasets...")
self.build_processors()
build_info = self.config.build_info
img_root = build_info.img_root
stroke_root = build_info.stroke_root
max_step = build_info.max_step
single_stroke = build_info.single_stroke
ann_path = build_info.ann_path
datasets = dict()
# create datasets
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors["train"],
text_processor=self.text_processors["train"],
img_root=img_root,
stroke_root=stroke_root,
ann_path=ann_path,
max_step=max_step,
single_stroke=single_stroke
)
return datasets
class PaintPixelCOCOBuilder(BaseDatasetBuilder):
train_dataset_cls = PaintPixelCOCODataset
def build(self):
"""
Create by split datasets inheriting torch.utils.data.Datasets.
# build() can be dataset-specific. Overwrite to customize.
"""
self.build_processors()
build_info = self.config.build_info
ann_info = build_info.annotations
vis_info = build_info.get(self.data_type)
res = build_info.res
datasets = dict()
split = 'train'
# annotation path
ann_paths = ann_info.get(split).storage
if isinstance(ann_paths, str):
ann_paths = [ann_paths]
# visual data storage path
vis_path = os.path.join(vis_info.storage, split)
# create datasets
dataset_cls = self.train_dataset_cls
datasets[split] = dataset_cls(
vis_processor=self.vis_processors["train"],
text_processor=self.text_processors["train"],
ann_paths=ann_paths,
vis_root=vis_path,
res=res
)
return datasets
@registry.register_builder("paintpixelcoco32")
class PaintPixelCOCO32Builder(PaintPixelCOCOBuilder):
train_dataset_cls = PaintPixelCOCODataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/paint/pixel_coco_32.yaml",
}
@registry.register_builder("paintpixelcoco64")
class PaintPixelCOCO64Builder(PaintPixelCOCOBuilder):
train_dataset_cls = PaintPixelCOCODataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/paint/pixel_coco_64.yaml",
}
class AllSegRefCOCOBuilder(BaseDatasetBuilder):
train_dataset_cls = SegReferCOCODataset
def build_datasets(self):
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
logging.info("Building datasets...")
self.build_processors()
build_info = self.config.build_info
image_path = build_info.image_path
ann_path = build_info.ann_path
res = build_info.res
datasets = dict()
if not os.path.exists(image_path):
warnings.warn("image path {} does not exist.".format(image_path))
if not os.path.exists(ann_path):
warnings.warn("ann path {} does not exist.".format(ann_path))
# create datasets
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors["train"],
text_processor=self.text_processors["train"],
ann_path=ann_path,
vis_root=image_path,
res=res,
dataset=build_info.dataset,
splitBy=build_info.splitBy
)
return datasets
@registry.register_builder("segrefcoco32")
class SegRefCOCO32Builder(AllSegRefCOCOBuilder):
DATASET_CONFIG_DICT = {
"default": "configs/datasets/paint/segrefcoco32.yaml",
}
@registry.register_builder("segrefcocop32")
class SegRefCOCOP32Builder(AllSegRefCOCOBuilder):
DATASET_CONFIG_DICT = {
"default": "configs/datasets/paint/segrefcocop32.yaml",
}
@registry.register_builder("segrefcocog32")
class SegRefCOCOG32Builder(AllSegRefCOCOBuilder):
DATASET_CONFIG_DICT = {
"default": "configs/datasets/paint/segrefcocog32.yaml",
}
@registry.register_builder("segrefcoco64")
class SegRefCOCO64Builder(AllSegRefCOCOBuilder):
DATASET_CONFIG_DICT = {
"default": "configs/datasets/paint/segrefcoco64.yaml",
}
@registry.register_builder("segrefcocop64")
class SegRefCOCOP64Builder(AllSegRefCOCOBuilder):
DATASET_CONFIG_DICT = {
"default": "configs/datasets/paint/segrefcocop64.yaml",
}
@registry.register_builder("segrefcocog64")
class SegRefCOCOG64Builder(AllSegRefCOCOBuilder):
DATASET_CONFIG_DICT = {
"default": "configs/datasets/paint/segrefcocog64.yaml",
}