Spaces:
Runtime error
Runtime error
import logging | |
import random | |
import torch | |
from torch.cuda.amp import autocast as autocast | |
import torch.nn as nn | |
from minigpt4.common.registry import registry | |
from minigpt4.models.base_model import BaseModel | |
class MiniGPTBase(BaseModel): | |
""" | |
Base class for MiniGPT-4 and MiniGPT-v2 | |
""" | |
def __init__( | |
self, | |
vit_model="eva_clip_g", | |
img_size=224, | |
drop_path_rate=0, | |
use_grad_checkpoint=False, | |
vit_precision="fp16", | |
freeze_vit=True, | |
llama_model="", | |
max_txt_len=32, | |
max_context_len=3800, | |
prompt_template="", | |
end_sym='\n', | |
low_resource=False, # use 8 bit and put vit in cpu | |
device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore. | |
lora_r=0, # lora_r means lora is not used | |
lora_target_modules=["q_proj", "v_proj"], | |
lora_alpha=16, | |
lora_dropout=0.05, | |
): | |
super().__init__() | |
self.llama_model, self.llama_tokenizer = self.init_llm( | |
llama_model_path=llama_model, | |
low_resource=low_resource, | |
low_res_device=device_8bit, | |
lora_r=lora_r, | |
lora_target_modules=lora_target_modules, | |
lora_alpha=lora_alpha, | |
lora_dropout=lora_dropout, | |
) | |
self.visual_encoder, self.ln_vision = self.init_vision_encoder( | |
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision, freeze_vit | |
) | |
self.max_txt_len = max_txt_len | |
self.max_context_len = max_context_len | |
self.end_sym = end_sym | |
self.prompt_template = prompt_template | |
self.prompt_list = [] | |
def vit_to_cpu(self): | |
self.ln_vision.to("cpu") | |
self.ln_vision.float() | |
self.visual_encoder.to("cpu") | |
self.visual_encoder.float() | |
def get_context_emb(self, prompt, img_list): | |
device = img_list[0].device | |
prompt_segs = prompt.split('<ImageHere>') | |
assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images." | |
seg_tokens = [ | |
self.llama_tokenizer( | |
seg, return_tensors="pt", add_special_tokens=i==0).to(device).input_ids # only add bos to the first seg | |
for i, seg in enumerate(prompt_segs) | |
] | |
seg_embs = [self.embed_tokens(seg_t) for seg_t in seg_tokens] | |
mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]] | |
mixed_embs = torch.cat(mixed_embs, dim=1) | |
return mixed_embs | |
def prompt_wrap(self, img_embeds, atts_img, prompts, lengths=None): | |
if prompts is None or len(prompts) == 0: | |
# prompts is not provided, just return the original image embedding | |
return img_embeds, atts_img | |
elif img_embeds is None: | |
# prompt is provided but there is no image embedding. return the prompt embedding in right padding | |
self.llama_tokenizer.padding_side = "right" | |
prompt_tokens = self.llama_tokenizer( | |
prompts, | |
return_tensors="pt", | |
padding="longest", | |
add_special_tokens=False | |
).to(self.device) | |
prompt_embeds = self.embed_tokens(prompt_tokens.input_ids) | |
atts_prompt = prompt_tokens.attention_mask | |
return prompt_embeds, atts_prompt | |
else: | |
# return the multi-modal embedding in right padding | |
emb_lists = [] | |
if isinstance(prompts, str): | |
prompts = [prompts] * len(img_embeds) | |
for idx, (each_img_embed, each_prompt) in enumerate(zip(img_embeds, prompts)): | |
pn = each_img_embed.shape[-2] | |
if lengths is not None: | |
each_img_embed = each_img_embed.reshape(-1, each_img_embed.shape[-1]) | |
each_img_embed = each_img_embed[:lengths[idx] * pn] | |
p_segs = each_prompt.split('<ImageHere>') | |
interleave_emb = [] | |
for idx, seg in enumerate(p_segs[:-1]): | |
p_tokens = self.llama_tokenizer( | |
seg, return_tensors="pt", add_special_tokens=False).to(img_embeds.device) | |
p_embed = self.embed_tokens(p_tokens.input_ids) | |
interleave_emb.append(torch.cat([p_embed, each_img_embed[None][:, idx * pn:(idx + 1) * pn]], dim=1)) | |
wrapped_emb = torch.cat(interleave_emb, dim=1) | |
p_tokens = self.llama_tokenizer( | |
p_segs[-1], return_tensors="pt", add_special_tokens=False).to(img_embeds.device) | |
p_embed = self.embed_tokens(p_tokens.input_ids) | |
wrapped_emb = torch.cat([wrapped_emb, p_embed], dim=1) | |
emb_lists.append(wrapped_emb) | |
emb_lens = [emb.shape[1] for emb in emb_lists] | |
pad_emb = self.embed_tokens(torch.tensor(self.llama_tokenizer.pad_token_id, device=img_embeds.device)) | |
max_length = max(emb_lens) if max(emb_lens) < self.max_context_len else self.max_context_len | |
wrapped_embs = pad_emb.expand(len(emb_lens), max_length, -1).clone() | |
wrapped_atts = torch.zeros([len(emb_lens), max_length], dtype=torch.int, device=img_embeds.device) | |
for i, emb in enumerate(emb_lists): | |
length = emb_lens[i] if emb_lens[i] < self.max_context_len else self.max_context_len | |
wrapped_embs[i, :length] = emb[:, :length] | |
wrapped_atts[i, :length] = 1 | |
return wrapped_embs, wrapped_atts | |
def concat_emb_input_output(self, input_embs, input_atts, output_embs, output_atts): | |
""" | |
Concatenate the batched input embedding and batched output embedding together. | |
Both the input and the output embedding should be right padded. | |
""" | |
input_lens = [] | |
cat_embs = [] | |
cat_atts = [] | |
for i in range(input_embs.size(0)): | |
input_len = input_atts[i].sum() | |
input_lens.append(input_len) | |
cat_embs.append( | |
torch.cat([ | |
input_embs[i][:input_len], | |
output_embs[i], | |
input_embs[i][input_len:] | |
]) | |
) | |
cat_atts.append( | |
torch.cat([ | |
input_atts[i][:input_len], | |
output_atts[i], | |
input_atts[i][input_len:] | |
]) | |
) | |
cat_embs = torch.stack(cat_embs) | |
cat_atts = torch.stack(cat_atts) | |
return cat_embs, cat_atts, input_lens | |
def tokenize_conversation(self, conv_q, conv_a): | |
"""concatenate conversation and make sure the model is only trained to regress the answer""" | |
to_regress_token_ids_list = [] | |
targets_list = [] | |
batch_size = len(conv_q) | |
for batch_idx in range(batch_size): | |
questions, answers = conv_q[batch_idx], conv_a[batch_idx] | |
questions = [self.llama_tokenizer(q, | |
return_tensors="pt", | |
add_special_tokens=False).to(self.device) for q in questions[1:]] # the first question is handled in the prompt wrap function, skip it | |
answers = [self.llama_tokenizer(q, | |
return_tensors="pt", | |
add_special_tokens=False).to(self.device) for q in answers] | |
cur_id = [] | |
cur_target = [] | |
for i in range(len(questions)): | |
cur_id.append(answers[i].input_ids) | |
cur_target.append(answers[i].input_ids) | |
cur_id.append(questions[i].input_ids) | |
cur_target.append(torch.ones_like(questions[i].input_ids) * -100) | |
cur_id.append(answers[-1].input_ids) | |
cur_target.append(answers[-1].input_ids) | |
cur_id = torch.cat(cur_id, dim=1) | |
cur_target = torch.cat(cur_target, dim=1) | |
to_regress_token_ids_list.append(cur_id) | |
targets_list.append(cur_target) | |
max_len = min(max([target.shape[1] for target in targets_list]), self.max_txt_len) | |
to_regress_token_ids = torch.ones([batch_size, max_len], | |
dtype=cur_id.dtype, device=self.device) * self.llama_tokenizer.pad_token_id | |
targets = torch.ones([batch_size, max_len], | |
dtype=cur_id.dtype, device=self.device) * -100 | |
for batch_idx in range(batch_size): | |
cur_len = to_regress_token_ids_list[batch_idx].shape[1] | |
to_regress_token_ids[batch_idx, :cur_len] = to_regress_token_ids_list[batch_idx][0, :max_len] | |
targets[batch_idx, :cur_len] = targets_list[batch_idx][0, :max_len] | |
to_regress_token_attn = (to_regress_token_ids != self.llama_tokenizer.pad_token_id).to(torch.int) | |
return to_regress_token_ids, to_regress_token_attn, targets | |
def preparing_embedding(self, samples): | |
### prepare input tokens | |
if 'image' in samples: | |
img_embeds, img_atts = self.encode_img(samples["image"]) | |
else: | |
img_embeds = img_atts = None | |
if 'conv_q' in samples: | |
# handeling conversation datasets | |
conv_q, conv_a = samples['conv_q'], samples['conv_a'] | |
connect_sym = samples['connect_sym'][0] | |
conv_q = [q.split(connect_sym)for q in conv_q] | |
conv_a = [a.split(connect_sym) for a in conv_a] | |
conv_q = [[self.prompt_template.format(item) for item in items] for items in conv_q] | |
cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, [q[0] for q in conv_q]) | |
regress_token_ids, regress_atts, part_targets = self.tokenize_conversation(conv_q, conv_a) | |
else: | |
if "instruction_input" in samples: | |
instruction = samples["instruction_input"] | |
elif self.prompt_list: | |
instruction = random.choice(self.prompt_list) | |
else: | |
instruction = None | |
if self.chat_template: | |
instruction = [self.prompt_template.format(instruct) for instruct in instruction] | |
if 'length' in samples: | |
# the input is a image train (like videos) | |
bsz, pn, hs = img_embeds.shape | |
img_embeds = img_embeds.reshape(len(samples['image']), -1, pn, hs) | |
cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction, samples['length']) | |
else: | |
cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction) | |
### prepare target tokens | |
self.llama_tokenizer.padding_side = "right" | |
text = [t + self.end_sym for t in samples["answer"]] | |
regress_tokens = self.llama_tokenizer( | |
text, | |
return_tensors="pt", | |
padding="longest", | |
truncation=True, | |
max_length=self.max_txt_len, | |
add_special_tokens=False | |
).to(self.device) | |
regress_token_ids = regress_tokens.input_ids | |
regress_atts = regress_tokens.attention_mask | |
part_targets = regress_token_ids.masked_fill( | |
regress_token_ids == self.llama_tokenizer.pad_token_id, -100 | |
) | |
regress_embeds = self.embed_tokens(regress_token_ids) | |
return cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets | |
def forward(self, samples, reduction='mean'): | |
# prepare the embedding to condition and the embedding to regress | |
cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets = \ | |
self.preparing_embedding(samples) | |
# concat the embedding to condition and the embedding to regress | |
inputs_embeds, attention_mask, input_lens = \ | |
self.concat_emb_input_output(cond_embeds, cond_atts, regress_embeds, regress_atts) | |
# get bos token embedding | |
bos = torch.ones_like(part_targets[:, :1]) * self.llama_tokenizer.bos_token_id | |
bos_embeds = self.embed_tokens(bos) | |
bos_atts = cond_atts[:, :1] | |
# add bos token at the begining | |
inputs_embeds = torch.cat([bos_embeds, inputs_embeds], dim=1) | |
attention_mask = torch.cat([bos_atts, attention_mask], dim=1) | |
# ensemble the final targets | |
targets = torch.ones([inputs_embeds.shape[0], inputs_embeds.shape[1]], | |
dtype=torch.long).to(self.device).fill_(-100) | |
for i, target in enumerate(part_targets): | |
targets[i, input_lens[i]+1:input_lens[i]+len(target)+1] = target # plus 1 for bos | |
with self.maybe_autocast(): | |
outputs = self.llama_model( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
return_dict=True, | |
labels=targets, | |
reduction=reduction | |
) | |
loss = outputs.loss | |
return {"loss": loss} | |
def embed_tokens(self, token_ids): | |
if hasattr(self.llama_model.base_model, 'model'): ## lora wrapped model | |
embeds = self.llama_model.base_model.model.model.embed_tokens(token_ids) | |
else: | |
embeds = self.llama_model.base_model.embed_tokens(token_ids) | |
return embeds | |
def generate( | |
self, | |
images, | |
texts, | |
num_beams=1, | |
max_new_tokens=20, | |
min_length=1, | |
top_p=0.9, | |
repetition_penalty=1, | |
length_penalty=1, | |
temperature=1, | |
do_sample=False, | |
stop_words_ids=[2], | |
): | |
''' | |
function for generate test use | |
''' | |
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub( | |
stops=[torch.tensor([i]).to(self.device) for i in stop_words_ids])]) | |
img_embeds, atts_img = self.encode_img(images.to(self.device)) | |
image_lists = [[image_emb[None]] for image_emb in img_embeds] | |
batch_embs = [self.get_context_emb(text, img_list) for text, img_list in zip(texts, image_lists)] | |
batch_size = len(batch_embs) | |
max_len = max([emb.shape[1] for emb in batch_embs]) | |
emb_dim = batch_embs[0].shape[2] | |
dtype = batch_embs[0].dtype | |
device = batch_embs[0].device | |
embs = torch.zeros([batch_size, max_len, emb_dim], dtype=dtype, device=device) | |
attn_mask = torch.zeros([batch_size, max_len], dtype=torch.int, device=device) | |
for i, emb in enumerate(batch_embs): | |
emb_len = emb.shape[1] | |
embs[i, -emb_len:] = emb[0] | |
attn_mask[i, -emb_len:] = 1 | |
with self.maybe_autocast(): | |
outputs = self.llama_model.generate( | |
inputs_embeds=embs, | |
attention_mask=attn_mask, | |
max_new_tokens=max_new_tokens, | |
num_beams=num_beams, | |
length_penalty=length_penalty, | |
temperature=temperature, | |
do_sample=do_sample, | |
min_length=min_length, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty | |
# stopping_criteria=stopping_criteria, | |
) | |
answers = [] | |
for output_token in outputs: | |
if output_token[0] == 0: | |
output_token = output_token[1:] | |
output_texts = self.llama_tokenizer.decode(output_token, skip_special_tokens=True) | |
output_texts = output_texts.split('</s>')[0] # remove the stop sign </s> | |
output_texts = output_texts.replace("<s>", "") | |
output_texts = output_texts.split(r'[/INST]')[-1].strip() | |
answers.append(output_texts) | |
return answers | |
def multi_select(self, images, texts, answers, num_cand=None): | |
all_losses = [] | |
for answer in answers: | |
choice_samples = { | |
'image': images, | |
'instruction_input': texts, | |
'answer': answer | |
} | |
loss = self.forward(choice_samples, reduction='none')['loss'].reshape(-1, 1) | |
all_losses.append(loss) | |
torch.cuda.empty_cache() | |
all_losses = torch.cat(all_losses, dim=-1) | |
if num_cand is not None: | |
for i in range(all_losses.shape[0]): | |
all_losses[i, num_cand[i]:] = 9999 | |
output_class_ranks = torch.argsort(all_losses, dim=-1) | |
return output_class_ranks.tolist() |