zyingt's picture
Upload 685 files
0d80816
raw
history blame contribute delete
No virus
12.2 kB
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
from modules.encoder.position_encoder import PositionEncoder
from modules.general.utils import append_dims, ConvNd, normalization, zero_module
from .attention import AttentionBlock
from .resblock import Downsample, ResBlock, Upsample
class UNet(nn.Module):
r"""The full UNet model with attention and timestep embedding.
Args:
dims: determines if the signal is 1D (temporal), 2D(spatial).
in_channels: channels in the input Tensor.
model_channels: base channel count for the model.
out_channels: channels in the output Tensor.
num_res_blocks: number of residual blocks per downsample.
channel_mult: channel multiplier for each level of the UNet.
num_attn_blocks: number of attention blocks at place.
attention_resolutions: a collection of downsample rates at which attention will
take place. May be a set, list, or tuple. For example, if this contains 4,
then at 4x downsampling, attention will be used.
num_heads: the number of attention heads in each attention layer.
num_head_channels: if specified, ignore num_heads and instead use a fixed
channel width per attention head.
d_context: if specified, use for cross-attention channel project.
p_dropout: the dropout probability.
use_self_attention: Apply self attention before cross attention.
num_classes: if specified (as an int), then this model will be class-conditional
with ``num_classes`` classes.
use_extra_film: if specified, use an extra FiLM-like conditioning mechanism.
d_emb: if specified, use for FiLM-like conditioning.
use_scale_shift_norm: use a FiLM-like conditioning mechanism.
resblock_updown: use residual blocks for up/downsampling.
"""
def __init__(
self,
dims: int = 1,
in_channels: int = 100,
model_channels: int = 128,
out_channels: int = 100,
h_dim: int = 128,
num_res_blocks: int = 1,
channel_mult: tuple = (1, 2, 4),
num_attn_blocks: int = 1,
attention_resolutions: tuple = (1, 2, 4),
num_heads: int = 1,
num_head_channels: int = -1,
d_context: int = None,
context_hdim: int = 128,
p_dropout: float = 0.0,
num_classes: int = -1,
use_extra_film: str = None,
d_emb: int = None,
use_scale_shift_norm: bool = True,
resblock_updown: bool = False,
):
super().__init__()
self.dims = dims
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
self.num_res_blocks = num_res_blocks
self.channel_mult = channel_mult
self.num_attn_blocks = num_attn_blocks
self.attention_resolutions = attention_resolutions
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.d_context = d_context
self.p_dropout = p_dropout
self.num_classes = num_classes
self.use_extra_film = use_extra_film
self.d_emb = d_emb
self.use_scale_shift_norm = use_scale_shift_norm
self.resblock_updown = resblock_updown
time_embed_dim = model_channels * 4
self.pos_enc = PositionEncoder(model_channels, time_embed_dim)
assert (
num_classes == -1 or use_extra_film is None
), "You cannot set both num_classes and use_extra_film."
if self.num_classes > 0:
# TODO: if used for singer, norm should be 1, correct?
self.label_emb = nn.Embedding(num_classes, time_embed_dim, max_norm=1.0)
elif use_extra_film is not None:
assert (
d_emb is not None
), "d_emb must be specified if use_extra_film is not None"
assert use_extra_film in [
"add",
"concat",
], f"use_extra_film only supported by add or concat. Your input is {use_extra_film}"
self.use_extra_film = use_extra_film
self.film_emb = ConvNd(dims, d_emb, time_embed_dim, 1)
if use_extra_film == "concat":
time_embed_dim *= 2
# Input blocks
ch = input_ch = int(channel_mult[0] * model_channels)
self.input_blocks = nn.ModuleList(
[UNetSequential(ConvNd(dims, in_channels, ch, 3, padding=1))]
)
self._feature_size = ch
input_block_chans = [ch]
ds = 1
for level, mult in enumerate(channel_mult):
for _ in range(num_res_blocks):
layers = [
ResBlock(
ch,
time_embed_dim,
p_dropout,
out_channels=int(mult * model_channels),
dims=dims,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = int(mult * model_channels)
if ds in attention_resolutions:
for _ in range(num_attn_blocks):
layers.append(
AttentionBlock(
ch,
num_heads=num_heads,
num_head_channels=num_head_channels,
encoder_channels=d_context,
dims=dims,
h_dim=h_dim // (level + 1),
encoder_hdim=context_hdim,
p_dropout=p_dropout,
)
)
self.input_blocks.append(UNetSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
UNetSequential(
ResBlock(
ch,
time_embed_dim,
p_dropout,
out_channels=out_ch,
dims=dims,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(ch, dims=dims, out_channels=out_ch)
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
self._feature_size += ch
# Middle blocks
self.middle_block = UNetSequential(
ResBlock(
ch,
time_embed_dim,
p_dropout,
dims=dims,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
num_heads=num_heads,
num_head_channels=num_head_channels,
encoder_channels=d_context,
dims=dims,
h_dim=h_dim // (level + 1),
encoder_hdim=context_hdim,
p_dropout=p_dropout,
),
ResBlock(
ch,
time_embed_dim,
p_dropout,
dims=dims,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self._feature_size += ch
# Output blocks
self.output_blocks = nn.ModuleList([])
for level, mult in tuple(enumerate(channel_mult))[::-1]:
for i in range(num_res_blocks + 1):
ich = input_block_chans.pop()
layers = [
ResBlock(
ch + ich,
time_embed_dim,
p_dropout,
out_channels=int(model_channels * mult),
dims=dims,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = int(model_channels * mult)
if ds in attention_resolutions:
for _ in range(num_attn_blocks):
layers.append(
AttentionBlock(
ch,
num_heads=num_heads,
num_head_channels=num_head_channels,
encoder_channels=d_context,
dims=dims,
h_dim=h_dim // (level + 1),
encoder_hdim=context_hdim,
p_dropout=p_dropout,
)
)
if level and i == num_res_blocks:
out_ch = ch
layers.append(
ResBlock(
ch,
time_embed_dim,
p_dropout,
out_channels=out_ch,
dims=dims,
use_scale_shift_norm=use_scale_shift_norm,
up=True,
)
if resblock_updown
else Upsample(ch, dims=dims, out_channels=out_ch)
)
ds //= 2
self.output_blocks.append(UNetSequential(*layers))
self._feature_size += ch
# Final proj out
self.out = nn.Sequential(
normalization(ch),
nn.SiLU(),
zero_module(ConvNd(dims, input_ch, out_channels, 3, padding=1)),
)
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
r"""Apply the model to an input batch.
Args:
x: an [N x C x ...] Tensor of inputs.
timesteps: a 1-D batch of timesteps, i.e. [N].
context: conditioning Tensor with shape of [N x ``d_context`` x ...] plugged
in via cross attention.
y: an [N] Tensor of labels, if **class-conditional**.
an [N x ``d_emb`` x ...] Tensor if **film-embed conditional**.
Returns:
an [N x C x ...] Tensor of outputs.
"""
assert (y is None) or (
(y is not None)
and ((self.num_classes > 0) or (self.use_extra_film is not None))
), f"y must be specified if num_classes or use_extra_film is not None. \nGot num_classes: {self.num_classes}\t\nuse_extra_film: {self.use_extra_film}\t\n"
hs = []
emb = self.pos_enc(timesteps)
emb = append_dims(emb, x.dim())
if self.num_classes > 0:
assert y.size() == (x.size(0),)
emb = emb + self.label_emb(y)
elif self.use_extra_film is not None:
assert y.size() == (x.size(0), self.d_emb, *x.size()[2:])
y = self.film_emb(y)
if self.use_extra_film == "add":
emb = emb + y
elif self.use_extra_film == "concat":
emb = torch.cat([emb, y], dim=1)
h = x
for module in self.input_blocks:
h = module(h, emb, context)
hs.append(h)
h = self.middle_block(h, emb, context)
for module in self.output_blocks:
h = torch.cat([h, hs.pop()], dim=1)
h = module(h, emb, context)
return self.out(h)
class UNetSequential(nn.Sequential):
r"""A sequential module that passes embeddings to the children that support it."""
def forward(self, x, emb=None, context=None):
for layer in self:
if isinstance(layer, ResBlock):
x = layer(x, emb)
elif isinstance(layer, AttentionBlock):
x = layer(x, context)
else:
x = layer(x)
return x