Spaces:
Runtime error
Runtime error
VinayakMane47
commited on
Commit
•
523a6d5
1
Parent(s):
11a28bc
Update app.py
Browse files
app.py
CHANGED
@@ -3,48 +3,43 @@ import numpy as np
|
|
3 |
from keras.preprocessing import image
|
4 |
from keras.models import load_model
|
5 |
|
6 |
-
# Define a dictionary of classes
|
7 |
-
classes = {'french_bulldog': 0,
|
8 |
-
'german_shepherd': 1,
|
9 |
-
'golden_retriever': 2,
|
10 |
-
'poodle': 3,
|
11 |
-
'yorkshire_terrier': 4}
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
x = image.img_to_array(img)
|
21 |
x = np.expand_dims(x, axis=0)
|
22 |
x = x / 255.
|
23 |
-
|
24 |
-
# Make the prediction using the trained model
|
25 |
preds = model.predict(x)
|
26 |
class_idx = np.argmax(preds[0])
|
27 |
-
predicted_class = [k for k, v in
|
28 |
-
|
29 |
-
# Return the predicted dog breed
|
30 |
return predicted_class
|
31 |
|
32 |
-
# Define the Streamlit app
|
33 |
-
def app():
|
34 |
-
st.title("Dog Breed Classification App")
|
35 |
-
st.write("Upload an image of a dog to predict its breed.")
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
41 |
if uploaded_file is not None:
|
42 |
-
|
43 |
-
with open(
|
44 |
f.write(uploaded_file.getbuffer())
|
45 |
-
predicted_class =
|
46 |
-
st.
|
47 |
-
|
48 |
-
|
49 |
if __name__ == '__main__':
|
50 |
-
|
|
|
3 |
from keras.preprocessing import image
|
4 |
from keras.models import load_model
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# Define the dictionary of classes and load the model
|
8 |
+
CLASSES = {
|
9 |
+
'french_bulldog': 0,
|
10 |
+
'german_shepherd': 1,
|
11 |
+
'golden_retriever': 2,
|
12 |
+
'poodle': 3,
|
13 |
+
'yorkshire_terrier': 4
|
14 |
+
}
|
15 |
+
MODEL_PATH = 'best_model.h5'
|
16 |
+
model = load_model(MODEL_PATH)
|
17 |
+
|
18 |
+
|
19 |
+
# Define a function to make predictions on a given image
|
20 |
+
def predict_breed(image_file):
|
21 |
+
img = image.load_img(image_file, target_size=(256, 256))
|
22 |
x = image.img_to_array(img)
|
23 |
x = np.expand_dims(x, axis=0)
|
24 |
x = x / 255.
|
|
|
|
|
25 |
preds = model.predict(x)
|
26 |
class_idx = np.argmax(preds[0])
|
27 |
+
predicted_class = [k for k, v in CLASSES.items() if v == class_idx][0]
|
|
|
|
|
28 |
return predicted_class
|
29 |
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# Create the Streamlit app
|
32 |
+
def main():
|
33 |
+
st.title('Dog Breed Classification')
|
34 |
+
uploaded_file = st.file_uploader('Choose an image of a dog', type=['jpg', 'jpeg', 'png'])
|
35 |
+
|
36 |
if uploaded_file is not None:
|
37 |
+
image_file = uploaded_file.name
|
38 |
+
with open(image_file, 'wb') as f:
|
39 |
f.write(uploaded_file.getbuffer())
|
40 |
+
predicted_class = predict_breed(image_file)
|
41 |
+
st.image(uploaded_file, caption=f'Predicted class: {predicted_class}', use_column_width=True)
|
42 |
+
|
43 |
+
|
44 |
if __name__ == '__main__':
|
45 |
+
main()
|