Spaces:
Runtime error
Runtime error
Commit
·
11a28bc
1
Parent(s):
24686cf
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
from keras.preprocessing import image
|
4 |
+
from keras.models import load_model
|
5 |
+
|
6 |
+
# Define a dictionary of classes
|
7 |
+
classes = {'french_bulldog': 0,
|
8 |
+
'german_shepherd': 1,
|
9 |
+
'golden_retriever': 2,
|
10 |
+
'poodle': 3,
|
11 |
+
'yorkshire_terrier': 4}
|
12 |
+
|
13 |
+
# Load the saved model from the disk
|
14 |
+
model = load_model('best_model.h5')
|
15 |
+
|
16 |
+
# Define the function for predicting the dog breed
|
17 |
+
def predict_dog_breed(image_path):
|
18 |
+
# Load the image from the specified path and preprocess it
|
19 |
+
img = image.load_img(image_path, target_size=(256, 256))
|
20 |
+
x = image.img_to_array(img)
|
21 |
+
x = np.expand_dims(x, axis=0)
|
22 |
+
x = x / 255.
|
23 |
+
|
24 |
+
# Make the prediction using the trained model
|
25 |
+
preds = model.predict(x)
|
26 |
+
class_idx = np.argmax(preds[0])
|
27 |
+
predicted_class = [k for k, v in classes.items() if v == class_idx][0]
|
28 |
+
|
29 |
+
# Return the predicted dog breed
|
30 |
+
return predicted_class
|
31 |
+
|
32 |
+
# Define the Streamlit app
|
33 |
+
def app():
|
34 |
+
st.title("Dog Breed Classification App")
|
35 |
+
st.write("Upload an image of a dog to predict its breed.")
|
36 |
+
|
37 |
+
# Allow the user to upload an image file
|
38 |
+
uploaded_file = st.file_uploader("Choose a dog image...", type=["jpg", "jpeg", "png"])
|
39 |
+
|
40 |
+
# Make the prediction when the user clicks the "Predict" button
|
41 |
+
if uploaded_file is not None:
|
42 |
+
image_path = f"tmp/{uploaded_file.name}"
|
43 |
+
with open(image_path, "wb") as f:
|
44 |
+
f.write(uploaded_file.getbuffer())
|
45 |
+
predicted_class = predict_dog_breed(image_path)
|
46 |
+
st.write(f"Predicted dog breed: {predicted_class}")
|
47 |
+
|
48 |
+
# Run the Streamlit app
|
49 |
+
if __name__ == '__main__':
|
50 |
+
app()
|