Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import random | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
import torch | |
from diffusers import AutoencoderKL, StableDiffusionXLPipeline | |
import uuid | |
DESCRIPTION = "# Segmind Stable Diffusion: SSD-1B" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
MAX_SEED = np.iinfo(np.int32).max | |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1" | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024")) | |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "1") == "1" | |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" | |
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "0") == "1" | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
if torch.cuda.is_available(): | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"segmind/SSD-1B", | |
vae=vae, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
variant="fp16", | |
) | |
if ENABLE_REFINER: | |
refiner = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-refiner-1.0", | |
vae=vae, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
variant="fp16", | |
) | |
if ENABLE_CPU_OFFLOAD: | |
pipe.enable_model_cpu_offload() | |
if ENABLE_REFINER: | |
refiner.enable_model_cpu_offload() | |
else: | |
pipe.to(device) | |
if ENABLE_REFINER: | |
refiner.to(device) | |
print("Loaded on Device!") | |
if USE_TORCH_COMPILE: | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
if ENABLE_REFINER: | |
refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True) | |
print("Model Compiled!") | |
def save_image(img): | |
unique_name = str(uuid.uuid4()) + '.png' | |
img.save(unique_name) | |
return unique_name | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def generate( | |
prompt: str, | |
negative_prompt: str = "", | |
prompt_2: str = "", | |
negative_prompt_2: str = "", | |
use_negative_prompt: bool = False, | |
use_prompt_2: bool = False, | |
use_negative_prompt_2: bool = False, | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale_base: float = 5.0, | |
guidance_scale_refiner: float = 5.0, | |
num_inference_steps_base: int = 25, | |
num_inference_steps_refiner: int = 25, | |
apply_refiner: bool = False, | |
randomize_seed: bool = False, | |
progress = gr.Progress(track_tqdm=True) | |
): | |
seed = randomize_seed_fn(seed, randomize_seed) | |
generator = torch.Generator().manual_seed(seed) | |
if not use_negative_prompt: | |
negative_prompt = None # type: ignore | |
if not use_prompt_2: | |
prompt_2 = None # type: ignore | |
if not use_negative_prompt_2: | |
negative_prompt_2 = None # type: ignore | |
if not apply_refiner: | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
prompt_2=prompt_2, | |
negative_prompt_2=negative_prompt_2, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale_base, | |
num_inference_steps=num_inference_steps_base, | |
generator=generator, | |
output_type="pil", | |
).images[0] | |
else: | |
latents = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
prompt_2=prompt_2, | |
negative_prompt_2=negative_prompt_2, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale_base, | |
num_inference_steps=num_inference_steps_base, | |
generator=generator, | |
output_type="latent", | |
).images | |
image = refiner( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
prompt_2=prompt_2, | |
negative_prompt_2=negative_prompt_2, | |
guidance_scale=guidance_scale_refiner, | |
num_inference_steps=num_inference_steps_refiner, | |
image=latents, | |
generator=generator, | |
).images[0] | |
image_path = save_image(image) | |
print(image_path) | |
return [image_path], seed | |
examples = ['3d digital art of an adorable ghost, glowing within, holding a heart shaped pumpkin, Halloween, super cute, spooky haunted house background', 'beautiful lady, freckles, big smile, blue eyes, short ginger hair, dark makeup, wearing a floral blue vest top, soft light, dark grey background', 'professional portrait photo of an anthropomorphic cat wearing fancy gentleman hat and jacket walking in autumn forest.', 'an astronaut sitting in a diner, eating fries, cinematic, analog film', 'Albert Einstein in a surrealist Cyberpunk 2077 world, hyperrealistic', 'cinematic film still of Futuristic hero with golden dark armour with machine gun, muscular body'] | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", | |
elem_id="duplicate-button", | |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
) | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Gallery(label="Result", columns=1, show_label=False) | |
with gr.Accordion("Advanced options", open=False): | |
with gr.Row(): | |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False) | |
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False) | |
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
prompt_2 = gr.Text( | |
label="Prompt 2", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
visible=False, | |
) | |
negative_prompt_2 = gr.Text( | |
label="Negative prompt 2", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(visible=False): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER) | |
with gr.Row(): | |
guidance_scale_base = gr.Slider( | |
label="Guidance scale for base", | |
minimum=1, | |
maximum=20, | |
step=0.1, | |
value=9.0, | |
) | |
num_inference_steps_base = gr.Slider( | |
label="Number of inference steps for base", | |
minimum=10, | |
maximum=100, | |
step=1, | |
value=25, | |
) | |
with gr.Row(visible=False) as refiner_params: | |
guidance_scale_refiner = gr.Slider( | |
label="Guidance scale for refiner", | |
minimum=1, | |
maximum=20, | |
step=0.1, | |
value=5.0, | |
) | |
num_inference_steps_refiner = gr.Slider( | |
label="Number of inference steps for refiner", | |
minimum=10, | |
maximum=100, | |
step=1, | |
value=25, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
outputs=[result, seed], | |
fn=generate, | |
cache_examples=CACHE_EXAMPLES, | |
) | |
use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt, | |
outputs=negative_prompt, | |
queue=False, | |
api_name=False, | |
) | |
use_prompt_2.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_prompt_2, | |
outputs=prompt_2, | |
queue=False, | |
api_name=False, | |
) | |
use_negative_prompt_2.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt_2, | |
outputs=negative_prompt_2, | |
queue=False, | |
api_name=False, | |
) | |
apply_refiner.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=apply_refiner, | |
outputs=refiner_params, | |
queue=False, | |
api_name=False, | |
) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
negative_prompt.submit, | |
prompt_2.submit, | |
negative_prompt_2.submit, | |
run_button.click, | |
], | |
fn=generate, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
prompt_2, | |
negative_prompt_2, | |
use_negative_prompt, | |
use_prompt_2, | |
use_negative_prompt_2, | |
seed, | |
width, | |
height, | |
guidance_scale_base, | |
guidance_scale_refiner, | |
num_inference_steps_base, | |
num_inference_steps_refiner, | |
apply_refiner, | |
randomize_seed | |
], | |
outputs=[result, seed], | |
api_name="run", | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() |