MimicYouFree / scripts /prepare_wenetspeech4tts.py
mrfakename's picture
Sync from GitHub repo
d37849f verified
raw
history blame
4.46 kB
# generate audio text map for WenetSpeech4TTS
# evaluate for vocab size
import sys
import os
sys.path.append(os.getcwd())
import json
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor
import torchaudio
from datasets import Dataset
from model.utils import convert_char_to_pinyin
def deal_with_sub_path_files(dataset_path, sub_path):
print(f"Dealing with: {sub_path}")
text_dir = os.path.join(dataset_path, sub_path, "txts")
audio_dir = os.path.join(dataset_path, sub_path, "wavs")
text_files = os.listdir(text_dir)
audio_paths, texts, durations = [], [], []
for text_file in tqdm(text_files):
with open(os.path.join(text_dir, text_file), "r", encoding="utf-8") as file:
first_line = file.readline().split("\t")
audio_nm = first_line[0]
audio_path = os.path.join(audio_dir, audio_nm + ".wav")
text = first_line[1].strip()
audio_paths.append(audio_path)
if tokenizer == "pinyin":
texts.extend(convert_char_to_pinyin([text], polyphone=polyphone))
elif tokenizer == "char":
texts.append(text)
audio, sample_rate = torchaudio.load(audio_path)
durations.append(audio.shape[-1] / sample_rate)
return audio_paths, texts, durations
def main():
assert tokenizer in ["pinyin", "char"]
audio_path_list, text_list, duration_list = [], [], []
executor = ProcessPoolExecutor(max_workers=max_workers)
futures = []
for dataset_path in dataset_paths:
sub_items = os.listdir(dataset_path)
sub_paths = [item for item in sub_items if os.path.isdir(os.path.join(dataset_path, item))]
for sub_path in sub_paths:
futures.append(executor.submit(deal_with_sub_path_files, dataset_path, sub_path))
for future in tqdm(futures, total=len(futures)):
audio_paths, texts, durations = future.result()
audio_path_list.extend(audio_paths)
text_list.extend(texts)
duration_list.extend(durations)
executor.shutdown()
if not os.path.exists("data"):
os.makedirs("data")
print(f"\nSaving to data/{dataset_name}_{tokenizer} ...")
dataset = Dataset.from_dict({"audio_path": audio_path_list, "text": text_list, "duration": duration_list})
dataset.save_to_disk(f"data/{dataset_name}_{tokenizer}/raw", max_shard_size="2GB") # arrow format
with open(f"data/{dataset_name}_{tokenizer}/duration.json", "w", encoding="utf-8") as f:
json.dump(
{"duration": duration_list}, f, ensure_ascii=False
) # dup a json separately saving duration in case for DynamicBatchSampler ease
print("\nEvaluating vocab size (all characters and symbols / all phonemes) ...")
text_vocab_set = set()
for text in tqdm(text_list):
text_vocab_set.update(list(text))
# add alphabets and symbols (optional, if plan to ft on de/fr etc.)
if tokenizer == "pinyin":
text_vocab_set.update([chr(i) for i in range(32, 127)] + [chr(i) for i in range(192, 256)])
with open(f"data/{dataset_name}_{tokenizer}/vocab.txt", "w") as f:
for vocab in sorted(text_vocab_set):
f.write(vocab + "\n")
print(f"\nFor {dataset_name}, sample count: {len(text_list)}")
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}\n")
if __name__ == "__main__":
max_workers = 32
tokenizer = "pinyin" # "pinyin" | "char"
polyphone = True
dataset_choice = 1 # 1: Premium, 2: Standard, 3: Basic
dataset_name = ["WenetSpeech4TTS_Premium", "WenetSpeech4TTS_Standard", "WenetSpeech4TTS_Basic"][dataset_choice - 1]
dataset_paths = [
"<SOME_PATH>/WenetSpeech4TTS/Basic",
"<SOME_PATH>/WenetSpeech4TTS/Standard",
"<SOME_PATH>/WenetSpeech4TTS/Premium",
][-dataset_choice:]
print(f"\nChoose Dataset: {dataset_name}\n")
main()
# Results (if adding alphabets with accents and symbols):
# WenetSpeech4TTS Basic Standard Premium
# samples count 3932473 1941220 407494
# pinyin vocab size 1349 1348 1344 (no polyphone)
# - - 1459 (polyphone)
# char vocab size 5264 5219 5042
# vocab size may be slightly different due to jieba tokenizer and pypinyin (e.g. way of polyphoneme)
# please be careful if using pretrained model, make sure the vocab.txt is same