Spaces:
Sleeping
Sleeping
| from typing import Optional, List | |
| import time | |
| import cohere | |
| from settings import ( | |
| COHERE_API_KEY, COHERE_API_URL, COHERE_MODEL_PRIMARY, COHERE_EMBED_MODEL, | |
| MODEL_SETTINGS, USE_OPEN_FALLBACKS, COHERE_TIMEOUT_S | |
| ) | |
| try: | |
| from local_llm import LocalLLM | |
| _HAS_LOCAL = True | |
| except Exception: | |
| _HAS_LOCAL = False | |
| _client: Optional[cohere.Client] = None | |
| def _co_client() -> Optional[cohere.Client]: | |
| global _client | |
| if _client is not None: | |
| return _client | |
| if not COHERE_API_KEY: | |
| return None | |
| kwargs = {"api_key": COHERE_API_KEY, "timeout": COHERE_TIMEOUT_S} | |
| if COHERE_API_URL: | |
| kwargs["base_url"] = COHERE_API_URL | |
| _client = cohere.Client(**kwargs) | |
| return _client | |
| def _retry(fn, attempts=3, backoff=0.8): | |
| last = None | |
| for i in range(attempts): | |
| try: | |
| return fn() | |
| except Exception as e: | |
| last = e | |
| time.sleep(backoff * (2 ** i)) | |
| raise last if last else RuntimeError("Unknown error") | |
| def cohere_chat(prompt: str) -> Optional[str]: | |
| cli = _co_client(); | |
| if not cli: return None | |
| def _call(): | |
| resp = cli.chat( | |
| model=COHERE_MODEL_PRIMARY, | |
| message=prompt, | |
| temperature=MODEL_SETTINGS["temperature"], | |
| max_tokens=MODEL_SETTINGS["max_new_tokens"], | |
| ) | |
| return getattr(resp, "text", None) or getattr(resp, "reply", None) \ | |
| or (resp.generations[0].text if getattr(resp, "generations", None) else None) | |
| try: | |
| return _retry(_call, attempts=2) | |
| except Exception as e: | |
| from audit_log import log_event; log_event("cohere_chat_error", None, {"err": str(e)}) | |
| return None | |
| def open_fallback_chat(prompt: str) -> Optional[str]: | |
| if not USE_OPEN_FALLBACKS or not _HAS_LOCAL: | |
| return None | |
| try: | |
| return LocalLLM().chat(prompt) | |
| except Exception: | |
| return None | |
| def cohere_embed(texts: List[str]) -> List[List[float]]: | |
| cli = _co_client() | |
| if not cli or not texts: | |
| return [] | |
| def _call(): | |
| resp = cli.embed(texts=texts, model=COHERE_EMBED_MODEL) | |
| return getattr(resp, "embeddings", None) or getattr(resp, "data", []) or [] | |
| try: | |
| return _retry(_call, attempts=2) | |
| except Exception as e: | |
| from audit_log import log_event; log_event("cohere_embed_error", None, {"err": str(e)}) | |
| return [] | |
| def generate_narrative(scenario_text: str, structured_sections_md: str, rag_snippets: List[str]) -> str: | |
| grounding = "\n\n".join([f"[RAG {i+1}]\n{t}" for i, t in enumerate(rag_snippets or [])]) | |
| prompt = f"""You are a Canadian healthcare operations copilot. | |
| Follow the scenario's requested deliverables exactly. Use the structured computations provided (already calculated deterministically) and the RAG snippets for grounding. | |
| # Scenario | |
| {scenario_text} | |
| # Deterministic Results (already computed) | |
| {structured_sections_md} | |
| # Grounding (Canadian sources, snippets) | |
| {grounding} | |
| Write a concise, decision-ready report tailored to provincial operations leaders. | |
| Do not invent numbers. If data are missing, say so clearly. | |
| """ | |
| out = cohere_chat(prompt) | |
| if out: return out | |
| out = open_fallback_chat(prompt) | |
| if out: return out | |
| return "Unable to generate narrative at this time." | |