Medica_DecisionSupportAI / llm_router.py
VED-AGI-1's picture
Update llm_router.py
74d8604 verified
from typing import Optional, List
import time
import cohere
from settings import (
COHERE_API_KEY, COHERE_API_URL, COHERE_MODEL_PRIMARY, COHERE_EMBED_MODEL,
MODEL_SETTINGS, USE_OPEN_FALLBACKS, COHERE_TIMEOUT_S
)
try:
from local_llm import LocalLLM
_HAS_LOCAL = True
except Exception:
_HAS_LOCAL = False
_client: Optional[cohere.Client] = None
def _co_client() -> Optional[cohere.Client]:
global _client
if _client is not None:
return _client
if not COHERE_API_KEY:
return None
kwargs = {"api_key": COHERE_API_KEY, "timeout": COHERE_TIMEOUT_S}
if COHERE_API_URL:
kwargs["base_url"] = COHERE_API_URL
_client = cohere.Client(**kwargs)
return _client
def _retry(fn, attempts=3, backoff=0.8):
last = None
for i in range(attempts):
try:
return fn()
except Exception as e:
last = e
time.sleep(backoff * (2 ** i))
raise last if last else RuntimeError("Unknown error")
def cohere_chat(prompt: str) -> Optional[str]:
cli = _co_client();
if not cli: return None
def _call():
resp = cli.chat(
model=COHERE_MODEL_PRIMARY,
message=prompt,
temperature=MODEL_SETTINGS["temperature"],
max_tokens=MODEL_SETTINGS["max_new_tokens"],
)
return getattr(resp, "text", None) or getattr(resp, "reply", None) \
or (resp.generations[0].text if getattr(resp, "generations", None) else None)
try:
return _retry(_call, attempts=2)
except Exception as e:
from audit_log import log_event; log_event("cohere_chat_error", None, {"err": str(e)})
return None
def open_fallback_chat(prompt: str) -> Optional[str]:
if not USE_OPEN_FALLBACKS or not _HAS_LOCAL:
return None
try:
return LocalLLM().chat(prompt)
except Exception:
return None
def cohere_embed(texts: List[str]) -> List[List[float]]:
cli = _co_client()
if not cli or not texts:
return []
def _call():
resp = cli.embed(texts=texts, model=COHERE_EMBED_MODEL)
return getattr(resp, "embeddings", None) or getattr(resp, "data", []) or []
try:
return _retry(_call, attempts=2)
except Exception as e:
from audit_log import log_event; log_event("cohere_embed_error", None, {"err": str(e)})
return []
def generate_narrative(scenario_text: str, structured_sections_md: str, rag_snippets: List[str]) -> str:
grounding = "\n\n".join([f"[RAG {i+1}]\n{t}" for i, t in enumerate(rag_snippets or [])])
prompt = f"""You are a Canadian healthcare operations copilot.
Follow the scenario's requested deliverables exactly. Use the structured computations provided (already calculated deterministically) and the RAG snippets for grounding.
# Scenario
{scenario_text}
# Deterministic Results (already computed)
{structured_sections_md}
# Grounding (Canadian sources, snippets)
{grounding}
Write a concise, decision-ready report tailored to provincial operations leaders.
Do not invent numbers. If data are missing, say so clearly.
"""
out = cohere_chat(prompt)
if out: return out
out = open_fallback_chat(prompt)
if out: return out
return "Unable to generate narrative at this time."