Spaces:
Running
on
Zero
Running
on
Zero
import random | |
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
from torchvision import transforms | |
from transformers import AutoModelForImageSegmentation | |
from inference_i2mv_sdxl import prepare_pipeline, remove_bg, run_pipeline | |
# Device and dtype | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Hyperparameters | |
NUM_VIEWS = 6 | |
HEIGHT = 768 | |
WIDTH = 768 | |
MAX_SEED = np.iinfo(np.int32).max | |
pipe = prepare_pipeline( | |
base_model="stabilityai/stable-diffusion-xl-base-1.0", | |
vae_model="madebyollin/sdxl-vae-fp16-fix", | |
unet_model=None, | |
lora_model=None, | |
adapter_path="huanngzh/mv-adapter", | |
scheduler=None, | |
num_views=NUM_VIEWS, | |
device=device, | |
dtype=dtype, | |
) | |
# remove bg | |
birefnet = AutoModelForImageSegmentation.from_pretrained( | |
"ZhengPeng7/BiRefNet", trust_remote_code=True | |
) | |
birefnet.to(device) | |
transform_image = transforms.Compose( | |
[ | |
transforms.Resize((1024, 1024)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
def infer( | |
prompt, | |
image, | |
do_rembg=True, | |
seed=42, | |
randomize_seed=False, | |
guidance_scale=3.0, | |
num_inference_steps=30, | |
reference_conditioning_scale=1.0, | |
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast", | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if do_rembg: | |
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, device) | |
else: | |
remove_bg_fn = None | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
if isinstance(seed, str): | |
try: | |
seed = int(seed.strip()) | |
except ValueError: | |
seed = 42 | |
images, preprocessed_image = run_pipeline( | |
pipe, | |
num_views=NUM_VIEWS, | |
text=prompt, | |
image=image, | |
height=HEIGHT, | |
width=WIDTH, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
seed=seed, | |
remove_bg_fn=remove_bg_fn, | |
reference_conditioning_scale=reference_conditioning_scale, | |
negative_prompt=negative_prompt, | |
device=device, | |
) | |
return images, preprocessed_image, seed | |
examples = [ | |
[ | |
"A decorative figurine of a young anime-style girl", | |
"assets/demo/i2mv/A_decorative_figurine_of_a_young_anime-style_girl.png", | |
True, | |
21, | |
], | |
[ | |
"A juvenile emperor penguin chick", | |
"assets/demo/i2mv/A_juvenile_emperor_penguin_chick.png", | |
True, | |
0, | |
], | |
[ | |
"A striped tabby cat with white fur sitting upright", | |
"assets/demo/i2mv/A_striped_tabby_cat_with_white_fur_sitting_upright.png", | |
True, | |
0, | |
], | |
] | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.Markdown( | |
f"""# MV-Adapter [Image-to-Multi-View] | |
Generate 768x768 multi-view images from a single image using SDXL <br> | |
[[page](https://huanngzh.github.io/MV-Adapter-Page/)] [[repo](https://github.com/huanngzh/MV-Adapter)] [Tips: if error occurs, wait for a few seconds and try again] | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
input_image = gr.Image( | |
label="Input Image", | |
sources=["upload", "webcam", "clipboard"], | |
type="pil", | |
) | |
preprocessed_image = gr.Image(label="Preprocessed Image", type="pil") | |
prompt = gr.Textbox( | |
label="Prompt", placeholder="Enter your prompt", value="high quality" | |
) | |
do_rembg = gr.Checkbox(label="Remove background", value=True) | |
run_button = gr.Button("Run") | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=30, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="CFG scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=3.0, | |
) | |
with gr.Row(): | |
reference_conditioning_scale = gr.Slider( | |
label="Image conditioning scale", | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.0, | |
) | |
with gr.Row(): | |
negative_prompt = gr.Textbox( | |
label="Negative prompt", | |
placeholder="Enter your negative prompt", | |
value="watermark, ugly, deformed, noisy, blurry, low contrast", | |
) | |
with gr.Column(): | |
result = gr.Gallery( | |
label="Result", | |
show_label=False, | |
columns=[3], | |
rows=[2], | |
object_fit="contain", | |
height="auto", | |
) | |
with gr.Row(): | |
gr.Examples( | |
examples=examples, | |
fn=infer, | |
inputs=[prompt, input_image, do_rembg, seed], | |
outputs=[result, preprocessed_image, seed], | |
# cache_examples=True, | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
input_image, | |
do_rembg, | |
seed, | |
randomize_seed, | |
guidance_scale, | |
num_inference_steps, | |
reference_conditioning_scale, | |
negative_prompt, | |
], | |
outputs=[result, preprocessed_image, seed], | |
) | |
demo.launch() | |