Spaces:
Sleeping
Sleeping
import pickle | |
import pandas as pd | |
import shap | |
from shap.plots._force_matplotlib import draw_additive_plot | |
import gradio as gr | |
import numpy as np | |
import matplotlib.pyplot as plt | |
# load the model from disk | |
loaded_model = pickle.load(open("filtered_xgb_model.pkl", 'rb')) | |
# Setup SHAP | |
explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS. | |
example_options = { | |
"๐ข Well Engaged": [4.9, 5, 5, 4.9, 5, 5], | |
"๐ก Marginal": [5, 4.6, 5, 5, 5, 4.7], | |
"๐ด At Risk": [4.5, 4.7, 4.8, 4.5, 4.7, 4.5] | |
} | |
# Function to apply the example values | |
def fill_example(example_label): | |
return example_options[example_label] | |
# Create the main function for server | |
def main_func(GM3, WorkEnv3, WellBeing2, GM2, JobSecurity, WellBeing1): | |
new_row = pd.DataFrame.from_dict({ | |
'GM3': GM3, | |
'WorkEnv3': WorkEnv3, | |
'WellBeing2': WellBeing2, | |
'GM2': GM2, | |
'JobSecurity': JobSecurity, | |
'WellBeing1': WellBeing1 | |
}, orient='index').transpose() | |
prob = loaded_model.predict_proba(new_row) | |
shap_values = explainer(new_row) | |
# plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False) | |
# plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False) | |
plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False) | |
plt.tight_layout() | |
local_plot = plt.gcf() | |
plt.rcParams['figure.figsize'] = 6,4 | |
plt.close() | |
return {"Leave": float(prob[0][0]), "Stay": 1-float(prob[0][0])}, local_plot | |
with gr.Blocks(title="๐ Intent to Stay Prediction") as demo: | |
gr.Image("https://1000logos.net/wp-content/uploads/2017/02/Font-Hilton-Logo.jpg", elem_id="banner") | |
gr.Markdown("# ๐ Employee Retention Predictor") | |
gr.Markdown("Predict if an employee will **Stay** or **Leave** based on key workplace factors.") | |
gr.Markdown("---") | |
with gr.Row(): | |
with gr.Column(): | |
GM3 = gr.Slider(label="๐จโ๐ผ My General Manager is an effective leader", minimum=1, maximum=5, value=4, step=0.1) | |
WorkEnv3 = gr.Slider(label="๐ข My Work Environment is comfortable and welcoming", minimum=1, maximum=5, value=4, step=0.1) | |
WellBeing2 = gr.Slider(label="๐ I feel balanced and healthy", minimum=1, maximum=5, value=4, step=0.1) | |
GM2 = gr.Slider(label="๐ My General Manager uses feedback from Team Members", minimum=1, maximum=5, value=4, step=0.1) | |
JobSecurity = gr.Slider(label="๐ Job Security", minimum=1, maximum=5, value=4, step=0.1) | |
WellBeing1 = gr.Slider(label="๐ง My mental health is good", minimum=1, maximum=5, value=4, step=0.1) | |
submit_btn = gr.Button("๐ Analyze Now", variant="primary") | |
with gr.Column(): | |
label = gr.Label(label="๐ฎ Prediction Result") | |
local_plot = gr.Plot(label="SHAP Analysis") | |
# Dropdown for labeled examples | |
gr.Markdown("### ๐ท๏ธ Select an Example:") | |
example_dropdown = gr.Dropdown( | |
label="Choose a scenario", | |
choices=list(example_options.keys()) | |
) | |
# Apply example values when selected | |
example_dropdown.change( | |
fill_example, | |
inputs=[example_dropdown], | |
outputs=[GM3, WorkEnv3, WellBeing2, GM2, JobSecurity, WellBeing1] | |
) | |
# Submit button functionality | |
submit_btn.click(main_func, [GM3, WorkEnv3, WellBeing2, GM2, JobSecurity, WellBeing1], [label, local_plot]) | |
demo.launch() |