import pickle import pandas as pd import shap from shap.plots._force_matplotlib import draw_additive_plot import gradio as gr import numpy as np import matplotlib.pyplot as plt # load the model from disk loaded_model = pickle.load(open("filtered_xgb_model.pkl", 'rb')) # Setup SHAP explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS. example_options = { "🟢 Well Engaged": [4.9, 5, 5, 4.9, 5, 5], "🟡 Marginal": [5, 4.6, 5, 5, 5, 4.7], "🔴 At Risk": [4.5, 4.7, 4.8, 4.5, 4.7, 4.5] } # Function to apply the example values def fill_example(example_label): return example_options[example_label] # Create the main function for server def main_func(GM3, WorkEnv3, WellBeing2, GM2, JobSecurity, WellBeing1): new_row = pd.DataFrame.from_dict({ 'GM3': GM3, 'WorkEnv3': WorkEnv3, 'WellBeing2': WellBeing2, 'GM2': GM2, 'JobSecurity': JobSecurity, 'WellBeing1': WellBeing1 }, orient='index').transpose() prob = loaded_model.predict_proba(new_row) shap_values = explainer(new_row) # plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False) # plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False) plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False) plt.tight_layout() local_plot = plt.gcf() plt.rcParams['figure.figsize'] = 6,4 plt.close() return {"Leave": float(prob[0][0]), "Stay": 1-float(prob[0][0])}, local_plot with gr.Blocks(title="🌟 Intent to Stay Prediction") as demo: gr.Image("https://1000logos.net/wp-content/uploads/2017/02/Font-Hilton-Logo.jpg", elem_id="banner") gr.Markdown("# 🌟 Employee Retention Predictor") gr.Markdown("Predict if an employee will **Stay** or **Leave** based on key workplace factors.") gr.Markdown("---") with gr.Row(): with gr.Column(): GM3 = gr.Slider(label="👨‍💼 My General Manager is an effective leader", minimum=1, maximum=5, value=4, step=0.1) WorkEnv3 = gr.Slider(label="🏢 My Work Environment is comfortable and welcoming", minimum=1, maximum=5, value=4, step=0.1) WellBeing2 = gr.Slider(label="💖 I feel balanced and healthy", minimum=1, maximum=5, value=4, step=0.1) GM2 = gr.Slider(label="📊 My General Manager uses feedback from Team Members", minimum=1, maximum=5, value=4, step=0.1) JobSecurity = gr.Slider(label="🔐 Job Security", minimum=1, maximum=5, value=4, step=0.1) WellBeing1 = gr.Slider(label="🧠 My mental health is good", minimum=1, maximum=5, value=4, step=0.1) submit_btn = gr.Button("🚀 Analyze Now", variant="primary") with gr.Column(): label = gr.Label(label="🔮 Prediction Result") local_plot = gr.Plot(label="SHAP Analysis") # Dropdown for labeled examples gr.Markdown("### 🏷️ Select an Example:") example_dropdown = gr.Dropdown( label="Choose a scenario", choices=list(example_options.keys()) ) # Apply example values when selected example_dropdown.change( fill_example, inputs=[example_dropdown], outputs=[GM3, WorkEnv3, WellBeing2, GM2, JobSecurity, WellBeing1] ) # Submit button functionality submit_btn.click(main_func, [GM3, WorkEnv3, WellBeing2, GM2, JobSecurity, WellBeing1], [label, local_plot]) demo.launch()