Tune-A-Video-Training-UI / app_upload.py
hysts's picture
hysts HF staff
Migrate from yapf to black
ecfdc8b
#!/usr/bin/env python
from __future__ import annotations
import os
import gradio as gr
from constants import MODEL_LIBRARY_ORG_NAME, UploadTarget
from uploader import upload
from utils import find_exp_dirs
def load_local_model_list() -> dict:
choices = find_exp_dirs()
return gr.update(choices=choices, value=choices[0] if choices else None)
def create_upload_demo(disable_run_button: bool = False) -> gr.Blocks:
model_dirs = find_exp_dirs()
with gr.Blocks() as demo:
with gr.Box():
gr.Markdown("Local Models")
reload_button = gr.Button("Reload Model List")
model_dir = gr.Dropdown(
label="Model names", choices=model_dirs, value=model_dirs[0] if model_dirs else None
)
with gr.Box():
gr.Markdown("Upload Settings")
with gr.Row():
use_private_repo = gr.Checkbox(label="Private", value=True)
delete_existing_repo = gr.Checkbox(label="Delete existing repo of the same name", value=False)
upload_to = gr.Radio(
label="Upload to", choices=[_.value for _ in UploadTarget], value=UploadTarget.MODEL_LIBRARY.value
)
model_name = gr.Textbox(label="Model Name")
hf_token = gr.Text(
label="Hugging Face Write Token", type="password", visible=os.getenv("HF_TOKEN") is None
)
upload_button = gr.Button("Upload", interactive=not disable_run_button)
gr.Markdown(
f"""
- You can upload your trained model to your personal profile (i.e. `https://huggingface.co/{{your_username}}/{{model_name}}`) or to the public [Tune-A-Video Library](https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}) (i.e. `https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}/{{model_name}}`).
"""
)
with gr.Box():
gr.Markdown("Output message")
output_message = gr.Markdown()
reload_button.click(fn=load_local_model_list, inputs=None, outputs=model_dir)
upload_button.click(
fn=upload,
inputs=[
model_dir,
model_name,
upload_to,
use_private_repo,
delete_existing_repo,
hf_token,
],
outputs=output_message,
)
return demo
if __name__ == "__main__":
demo = create_upload_demo()
demo.queue(api_open=False, max_size=1).launch()