Migrate from yapf to black
Browse files- .pre-commit-config.yaml +26 -12
- .style.yapf +0 -5
- .vscode/settings.json +21 -0
- app.py +27 -29
- app_inference.py +64 -94
- app_system_monitor.py +29 -30
- app_training.py +77 -102
- app_upload.py +34 -34
- constants.py +7 -5
- inference.py +12 -17
- trainer.py +40 -41
- uploader.py +23 -20
- utils.py +12 -15
.pre-commit-config.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
exclude: patch
|
2 |
repos:
|
3 |
- repo: https://github.com/pre-commit/pre-commit-hooks
|
4 |
-
rev: v4.
|
5 |
hooks:
|
6 |
- id: check-executables-have-shebangs
|
7 |
- id: check-json
|
@@ -9,29 +9,43 @@ repos:
|
|
9 |
- id: check-shebang-scripts-are-executable
|
10 |
- id: check-toml
|
11 |
- id: check-yaml
|
12 |
-
- id: double-quote-string-fixer
|
13 |
- id: end-of-file-fixer
|
14 |
- id: mixed-line-ending
|
15 |
-
args: [
|
16 |
- id: requirements-txt-fixer
|
17 |
- id: trailing-whitespace
|
18 |
- repo: https://github.com/myint/docformatter
|
19 |
-
rev: v1.
|
20 |
hooks:
|
21 |
- id: docformatter
|
22 |
-
args: [
|
23 |
- repo: https://github.com/pycqa/isort
|
24 |
rev: 5.12.0
|
25 |
hooks:
|
26 |
- id: isort
|
|
|
27 |
- repo: https://github.com/pre-commit/mirrors-mypy
|
28 |
-
rev:
|
29 |
hooks:
|
30 |
- id: mypy
|
31 |
-
args: [
|
32 |
-
additional_dependencies: [
|
33 |
-
- repo: https://github.com/
|
34 |
-
rev:
|
35 |
hooks:
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
exclude: patch
|
2 |
repos:
|
3 |
- repo: https://github.com/pre-commit/pre-commit-hooks
|
4 |
+
rev: v4.4.0
|
5 |
hooks:
|
6 |
- id: check-executables-have-shebangs
|
7 |
- id: check-json
|
|
|
9 |
- id: check-shebang-scripts-are-executable
|
10 |
- id: check-toml
|
11 |
- id: check-yaml
|
|
|
12 |
- id: end-of-file-fixer
|
13 |
- id: mixed-line-ending
|
14 |
+
args: ["--fix=lf"]
|
15 |
- id: requirements-txt-fixer
|
16 |
- id: trailing-whitespace
|
17 |
- repo: https://github.com/myint/docformatter
|
18 |
+
rev: v1.7.5
|
19 |
hooks:
|
20 |
- id: docformatter
|
21 |
+
args: ["--in-place"]
|
22 |
- repo: https://github.com/pycqa/isort
|
23 |
rev: 5.12.0
|
24 |
hooks:
|
25 |
- id: isort
|
26 |
+
args: ["--profile", "black"]
|
27 |
- repo: https://github.com/pre-commit/mirrors-mypy
|
28 |
+
rev: v1.5.1
|
29 |
hooks:
|
30 |
- id: mypy
|
31 |
+
args: ["--ignore-missing-imports"]
|
32 |
+
additional_dependencies: ["types-python-slugify", "types-requests", "types-PyYAML"]
|
33 |
+
- repo: https://github.com/psf/black
|
34 |
+
rev: 23.9.0
|
35 |
hooks:
|
36 |
+
- id: black
|
37 |
+
language_version: python3.10
|
38 |
+
args: ["--line-length", "119"]
|
39 |
+
- repo: https://github.com/kynan/nbstripout
|
40 |
+
rev: 0.6.1
|
41 |
+
hooks:
|
42 |
+
- id: nbstripout
|
43 |
+
args: ["--extra-keys", "metadata.interpreter metadata.kernelspec cell.metadata.pycharm"]
|
44 |
+
- repo: https://github.com/nbQA-dev/nbQA
|
45 |
+
rev: 1.7.0
|
46 |
+
hooks:
|
47 |
+
- id: nbqa-black
|
48 |
+
- id: nbqa-pyupgrade
|
49 |
+
args: ["--py37-plus"]
|
50 |
+
- id: nbqa-isort
|
51 |
+
args: ["--float-to-top"]
|
.style.yapf
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
[style]
|
2 |
-
based_on_style = pep8
|
3 |
-
blank_line_before_nested_class_or_def = false
|
4 |
-
spaces_before_comment = 2
|
5 |
-
split_before_logical_operator = true
|
|
|
|
|
|
|
|
|
|
|
|
.vscode/settings.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[python]": {
|
3 |
+
"editor.defaultFormatter": "ms-python.black-formatter",
|
4 |
+
"editor.formatOnType": true,
|
5 |
+
"editor.codeActionsOnSave": {
|
6 |
+
"source.organizeImports": true
|
7 |
+
}
|
8 |
+
},
|
9 |
+
"black-formatter.args": [
|
10 |
+
"--line-length=119"
|
11 |
+
],
|
12 |
+
"isort.args": ["--profile", "black"],
|
13 |
+
"flake8.args": [
|
14 |
+
"--max-line-length=119"
|
15 |
+
],
|
16 |
+
"ruff.args": [
|
17 |
+
"--line-length=119"
|
18 |
+
],
|
19 |
+
"editor.formatOnSave": true,
|
20 |
+
"files.insertFinalNewline": true
|
21 |
+
}
|
app.py
CHANGED
@@ -15,37 +15,37 @@ from app_upload import create_upload_demo
|
|
15 |
from inference import InferencePipeline
|
16 |
from trainer import Trainer
|
17 |
|
18 |
-
TITLE =
|
19 |
|
20 |
-
ORIGINAL_SPACE_ID =
|
21 |
-
SPACE_ID = os.getenv(
|
22 |
-
GPU_DATA = getoutput(
|
23 |
-
SHARED_UI_WARNING = f
|
24 |
|
25 |
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
|
26 |
-
|
27 |
|
28 |
IS_SHARED_UI = SPACE_ID == ORIGINAL_SPACE_ID
|
29 |
-
if os.getenv(
|
30 |
SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'
|
31 |
else:
|
32 |
-
SETTINGS =
|
33 |
|
34 |
-
INVALID_GPU_WARNING = f
|
35 |
|
36 |
-
CUDA_NOT_AVAILABLE_WARNING = f
|
37 |
<center>
|
38 |
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
|
39 |
You can use "T4 small/medium" to run this demo.
|
40 |
</center>
|
41 |
-
|
42 |
|
43 |
-
HF_TOKEN_NOT_SPECIFIED_WARNING = f
|
44 |
|
45 |
You can check and create your Hugging Face tokens <a href="https://huggingface.co/settings/tokens" target="_blank">here</a>. You can specify environment variables in the "Repository secrets" section of the {SETTINGS} tab.
|
46 |
-
|
47 |
|
48 |
-
HF_TOKEN = os.getenv(
|
49 |
|
50 |
|
51 |
def show_warning(warning_text: str) -> gr.Blocks:
|
@@ -58,33 +58,31 @@ def show_warning(warning_text: str) -> gr.Blocks:
|
|
58 |
pipe = InferencePipeline(HF_TOKEN)
|
59 |
trainer = Trainer()
|
60 |
|
61 |
-
with gr.Blocks(css=
|
62 |
if IS_SHARED_UI:
|
63 |
show_warning(SHARED_UI_WARNING)
|
64 |
elif not torch.cuda.is_available():
|
65 |
show_warning(CUDA_NOT_AVAILABLE_WARNING)
|
66 |
-
elif
|
67 |
show_warning(INVALID_GPU_WARNING)
|
68 |
|
69 |
gr.Markdown(TITLE)
|
70 |
with gr.Tabs():
|
71 |
-
with gr.TabItem(
|
72 |
-
create_training_demo(trainer,
|
73 |
-
|
74 |
-
|
75 |
-
with gr.TabItem(
|
76 |
-
|
77 |
-
|
78 |
-
disable_run_button=IS_SHARED_UI)
|
79 |
-
with gr.TabItem('Upload'):
|
80 |
-
gr.Markdown('''
|
81 |
- You can use this tab to upload models later if you choose not to upload models in training time or if upload in training time failed.
|
82 |
-
|
|
|
83 |
create_upload_demo(disable_run_button=IS_SHARED_UI)
|
84 |
|
85 |
with gr.Row():
|
86 |
-
if not IS_SHARED_UI and not os.getenv(
|
87 |
-
with gr.Accordion(label=
|
88 |
create_monitor_demo()
|
89 |
|
90 |
if not HF_TOKEN:
|
|
|
15 |
from inference import InferencePipeline
|
16 |
from trainer import Trainer
|
17 |
|
18 |
+
TITLE = "# [Tune-A-Video](https://tuneavideo.github.io/)"
|
19 |
|
20 |
+
ORIGINAL_SPACE_ID = "Tune-A-Video-library/Tune-A-Video-Training-UI"
|
21 |
+
SPACE_ID = os.getenv("SPACE_ID")
|
22 |
+
GPU_DATA = getoutput("nvidia-smi")
|
23 |
+
SHARED_UI_WARNING = f"""## Attention - Training doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
|
24 |
|
25 |
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
|
26 |
+
"""
|
27 |
|
28 |
IS_SHARED_UI = SPACE_ID == ORIGINAL_SPACE_ID
|
29 |
+
if os.getenv("SYSTEM") == "spaces" and SPACE_ID != ORIGINAL_SPACE_ID:
|
30 |
SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'
|
31 |
else:
|
32 |
+
SETTINGS = "Settings"
|
33 |
|
34 |
+
INVALID_GPU_WARNING = f"""## Attention - the specified GPU is invalid. Training may not work. Make sure you have selected a `T4 GPU` for this task."""
|
35 |
|
36 |
+
CUDA_NOT_AVAILABLE_WARNING = f"""## Attention - Running on CPU.
|
37 |
<center>
|
38 |
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
|
39 |
You can use "T4 small/medium" to run this demo.
|
40 |
</center>
|
41 |
+
"""
|
42 |
|
43 |
+
HF_TOKEN_NOT_SPECIFIED_WARNING = f"""The environment variable `HF_TOKEN` is not specified. Feel free to specify your Hugging Face token with write permission if you don't want to manually provide it for every run.
|
44 |
|
45 |
You can check and create your Hugging Face tokens <a href="https://huggingface.co/settings/tokens" target="_blank">here</a>. You can specify environment variables in the "Repository secrets" section of the {SETTINGS} tab.
|
46 |
+
"""
|
47 |
|
48 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
49 |
|
50 |
|
51 |
def show_warning(warning_text: str) -> gr.Blocks:
|
|
|
58 |
pipe = InferencePipeline(HF_TOKEN)
|
59 |
trainer = Trainer()
|
60 |
|
61 |
+
with gr.Blocks(css="style.css") as demo:
|
62 |
if IS_SHARED_UI:
|
63 |
show_warning(SHARED_UI_WARNING)
|
64 |
elif not torch.cuda.is_available():
|
65 |
show_warning(CUDA_NOT_AVAILABLE_WARNING)
|
66 |
+
elif "T4" not in GPU_DATA:
|
67 |
show_warning(INVALID_GPU_WARNING)
|
68 |
|
69 |
gr.Markdown(TITLE)
|
70 |
with gr.Tabs():
|
71 |
+
with gr.TabItem("Train"):
|
72 |
+
create_training_demo(trainer, pipe, disable_run_button=IS_SHARED_UI)
|
73 |
+
with gr.TabItem("Run"):
|
74 |
+
create_inference_demo(pipe, HF_TOKEN, disable_run_button=IS_SHARED_UI)
|
75 |
+
with gr.TabItem("Upload"):
|
76 |
+
gr.Markdown(
|
77 |
+
"""
|
|
|
|
|
|
|
78 |
- You can use this tab to upload models later if you choose not to upload models in training time or if upload in training time failed.
|
79 |
+
"""
|
80 |
+
)
|
81 |
create_upload_demo(disable_run_button=IS_SHARED_UI)
|
82 |
|
83 |
with gr.Row():
|
84 |
+
if not IS_SHARED_UI and not os.getenv("DISABLE_SYSTEM_MONITOR"):
|
85 |
+
with gr.Accordion(label="System info", open=False):
|
86 |
create_monitor_demo()
|
87 |
|
88 |
if not HF_TOKEN:
|
app_inference.py
CHANGED
@@ -14,7 +14,7 @@ from utils import find_exp_dirs
|
|
14 |
|
15 |
class ModelSource(enum.Enum):
|
16 |
HUB_LIB = UploadTarget.MODEL_LIBRARY.value
|
17 |
-
LOCAL =
|
18 |
|
19 |
|
20 |
class InferenceUtil:
|
@@ -23,18 +23,13 @@ class InferenceUtil:
|
|
23 |
|
24 |
def load_hub_model_list(self) -> dict:
|
25 |
api = HfApi(token=self.hf_token)
|
26 |
-
choices = [
|
27 |
-
|
28 |
-
for info in api.list_models(author=MODEL_LIBRARY_ORG_NAME)
|
29 |
-
]
|
30 |
-
return gr.update(choices=choices,
|
31 |
-
value=choices[0] if choices else None)
|
32 |
|
33 |
@staticmethod
|
34 |
def load_local_model_list() -> dict:
|
35 |
choices = find_exp_dirs()
|
36 |
-
return gr.update(choices=choices,
|
37 |
-
value=choices[0] if choices else None)
|
38 |
|
39 |
def reload_model_list(self, model_source: str) -> dict:
|
40 |
if model_source == ModelSource.HUB_LIB.value:
|
@@ -48,22 +43,21 @@ class InferenceUtil:
|
|
48 |
try:
|
49 |
card = InferencePipeline.get_model_card(model_id, self.hf_token)
|
50 |
except Exception:
|
51 |
-
return
|
52 |
-
base_model = getattr(card.data,
|
53 |
-
training_prompt = getattr(card.data,
|
54 |
return base_model, training_prompt
|
55 |
|
56 |
-
def reload_model_list_and_update_model_info(
|
57 |
-
self, model_source: str) -> tuple[dict, str, str]:
|
58 |
model_list_update = self.reload_model_list(model_source)
|
59 |
-
model_list = model_list_update[
|
60 |
-
model_info = self.load_model_info(model_list[0] if model_list else
|
61 |
return model_list_update, *model_info
|
62 |
|
63 |
|
64 |
-
def create_inference_demo(
|
65 |
-
|
66 |
-
|
67 |
app = InferenceUtil(hf_token)
|
68 |
|
69 |
with gr.Blocks() as demo:
|
@@ -71,84 +65,60 @@ def create_inference_demo(pipe: InferencePipeline,
|
|
71 |
with gr.Column():
|
72 |
with gr.Box():
|
73 |
model_source = gr.Radio(
|
74 |
-
label=
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
choices=None,
|
80 |
-
value=None)
|
81 |
-
with gr.Accordion(
|
82 |
-
label=
|
83 |
-
'Model info (Base model and prompt used for training)',
|
84 |
-
open=False):
|
85 |
with gr.Row():
|
86 |
-
base_model_used_for_training = gr.Text(
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
minimum=1,
|
101 |
-
maximum=12,
|
102 |
-
step=1,
|
103 |
-
value=1)
|
104 |
-
seed = gr.Slider(label='Seed',
|
105 |
-
minimum=0,
|
106 |
-
maximum=100000,
|
107 |
-
step=1,
|
108 |
-
value=0)
|
109 |
-
with gr.Accordion('Advanced options', open=False):
|
110 |
-
num_steps = gr.Slider(label='Number of Steps',
|
111 |
-
minimum=0,
|
112 |
-
maximum=100,
|
113 |
-
step=1,
|
114 |
-
value=50)
|
115 |
-
guidance_scale = gr.Slider(label='Guidance scale',
|
116 |
-
minimum=0,
|
117 |
-
maximum=50,
|
118 |
-
step=0.1,
|
119 |
-
value=7.5)
|
120 |
-
|
121 |
-
run_button = gr.Button('Generate',
|
122 |
-
interactive=not disable_run_button)
|
123 |
-
|
124 |
-
gr.Markdown('''
|
125 |
- After training, you can press "Reload Model List" button to load your trained model names.
|
126 |
- It takes a few minutes to download model first.
|
127 |
- Expected time to generate an 8-frame video: 70 seconds with T4, 24 seconds with A10G, (10 seconds with A100)
|
128 |
-
|
|
|
129 |
with gr.Column():
|
130 |
-
result = gr.Video(label=
|
131 |
-
|
132 |
-
model_source.change(
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
inputs = [
|
153 |
model_id,
|
154 |
prompt,
|
@@ -163,10 +133,10 @@ def create_inference_demo(pipe: InferencePipeline,
|
|
163 |
return demo
|
164 |
|
165 |
|
166 |
-
if __name__ ==
|
167 |
import os
|
168 |
|
169 |
-
hf_token = os.getenv(
|
170 |
pipe = InferencePipeline(hf_token)
|
171 |
demo = create_inference_demo(pipe, hf_token)
|
172 |
demo.queue(api_open=False, max_size=10).launch()
|
|
|
14 |
|
15 |
class ModelSource(enum.Enum):
|
16 |
HUB_LIB = UploadTarget.MODEL_LIBRARY.value
|
17 |
+
LOCAL = "Local"
|
18 |
|
19 |
|
20 |
class InferenceUtil:
|
|
|
23 |
|
24 |
def load_hub_model_list(self) -> dict:
|
25 |
api = HfApi(token=self.hf_token)
|
26 |
+
choices = [info.modelId for info in api.list_models(author=MODEL_LIBRARY_ORG_NAME)]
|
27 |
+
return gr.update(choices=choices, value=choices[0] if choices else None)
|
|
|
|
|
|
|
|
|
28 |
|
29 |
@staticmethod
|
30 |
def load_local_model_list() -> dict:
|
31 |
choices = find_exp_dirs()
|
32 |
+
return gr.update(choices=choices, value=choices[0] if choices else None)
|
|
|
33 |
|
34 |
def reload_model_list(self, model_source: str) -> dict:
|
35 |
if model_source == ModelSource.HUB_LIB.value:
|
|
|
43 |
try:
|
44 |
card = InferencePipeline.get_model_card(model_id, self.hf_token)
|
45 |
except Exception:
|
46 |
+
return "", ""
|
47 |
+
base_model = getattr(card.data, "base_model", "")
|
48 |
+
training_prompt = getattr(card.data, "training_prompt", "")
|
49 |
return base_model, training_prompt
|
50 |
|
51 |
+
def reload_model_list_and_update_model_info(self, model_source: str) -> tuple[dict, str, str]:
|
|
|
52 |
model_list_update = self.reload_model_list(model_source)
|
53 |
+
model_list = model_list_update["choices"]
|
54 |
+
model_info = self.load_model_info(model_list[0] if model_list else "")
|
55 |
return model_list_update, *model_info
|
56 |
|
57 |
|
58 |
+
def create_inference_demo(
|
59 |
+
pipe: InferencePipeline, hf_token: str | None = None, disable_run_button: bool = False
|
60 |
+
) -> gr.Blocks:
|
61 |
app = InferenceUtil(hf_token)
|
62 |
|
63 |
with gr.Blocks() as demo:
|
|
|
65 |
with gr.Column():
|
66 |
with gr.Box():
|
67 |
model_source = gr.Radio(
|
68 |
+
label="Model Source", choices=[_.value for _ in ModelSource], value=ModelSource.HUB_LIB.value
|
69 |
+
)
|
70 |
+
reload_button = gr.Button("Reload Model List")
|
71 |
+
model_id = gr.Dropdown(label="Model ID", choices=None, value=None)
|
72 |
+
with gr.Accordion(label="Model info (Base model and prompt used for training)", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
with gr.Row():
|
74 |
+
base_model_used_for_training = gr.Text(label="Base model", interactive=False)
|
75 |
+
prompt_used_for_training = gr.Text(label="Training prompt", interactive=False)
|
76 |
+
prompt = gr.Textbox(label="Prompt", max_lines=1, placeholder='Example: "A panda is surfing"')
|
77 |
+
video_length = gr.Slider(label="Video length", minimum=4, maximum=12, step=1, value=8)
|
78 |
+
fps = gr.Slider(label="FPS", minimum=1, maximum=12, step=1, value=1)
|
79 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=100000, step=1, value=0)
|
80 |
+
with gr.Accordion("Advanced options", open=False):
|
81 |
+
num_steps = gr.Slider(label="Number of Steps", minimum=0, maximum=100, step=1, value=50)
|
82 |
+
guidance_scale = gr.Slider(label="Guidance scale", minimum=0, maximum=50, step=0.1, value=7.5)
|
83 |
+
|
84 |
+
run_button = gr.Button("Generate", interactive=not disable_run_button)
|
85 |
+
|
86 |
+
gr.Markdown(
|
87 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
- After training, you can press "Reload Model List" button to load your trained model names.
|
89 |
- It takes a few minutes to download model first.
|
90 |
- Expected time to generate an 8-frame video: 70 seconds with T4, 24 seconds with A10G, (10 seconds with A100)
|
91 |
+
"""
|
92 |
+
)
|
93 |
with gr.Column():
|
94 |
+
result = gr.Video(label="Result")
|
95 |
+
|
96 |
+
model_source.change(
|
97 |
+
fn=app.reload_model_list_and_update_model_info,
|
98 |
+
inputs=model_source,
|
99 |
+
outputs=[
|
100 |
+
model_id,
|
101 |
+
base_model_used_for_training,
|
102 |
+
prompt_used_for_training,
|
103 |
+
],
|
104 |
+
)
|
105 |
+
reload_button.click(
|
106 |
+
fn=app.reload_model_list_and_update_model_info,
|
107 |
+
inputs=model_source,
|
108 |
+
outputs=[
|
109 |
+
model_id,
|
110 |
+
base_model_used_for_training,
|
111 |
+
prompt_used_for_training,
|
112 |
+
],
|
113 |
+
)
|
114 |
+
model_id.change(
|
115 |
+
fn=app.load_model_info,
|
116 |
+
inputs=model_id,
|
117 |
+
outputs=[
|
118 |
+
base_model_used_for_training,
|
119 |
+
prompt_used_for_training,
|
120 |
+
],
|
121 |
+
)
|
122 |
inputs = [
|
123 |
model_id,
|
124 |
prompt,
|
|
|
133 |
return demo
|
134 |
|
135 |
|
136 |
+
if __name__ == "__main__":
|
137 |
import os
|
138 |
|
139 |
+
hf_token = os.getenv("HF_TOKEN")
|
140 |
pipe = InferencePipeline(hf_token)
|
141 |
demo = create_inference_demo(pipe, hf_token)
|
142 |
demo.queue(api_open=False, max_size=10).launch()
|
app_system_monitor.py
CHANGED
@@ -16,15 +16,12 @@ class SystemMonitor:
|
|
16 |
|
17 |
def __init__(self):
|
18 |
self.devices = nvitop.Device.all()
|
19 |
-
self.cpu_memory_usage = collections.deque(
|
20 |
-
|
21 |
-
self.
|
22 |
-
self.
|
23 |
-
|
24 |
-
self.
|
25 |
-
maxlen=self.MAX_SIZE)
|
26 |
-
self.gpu_memory_usage_str = ''
|
27 |
-
self.gpu_util_str = ''
|
28 |
|
29 |
def update(self) -> None:
|
30 |
self.update_cpu()
|
@@ -33,7 +30,9 @@ class SystemMonitor:
|
|
33 |
def update_cpu(self) -> None:
|
34 |
memory = psutil.virtual_memory()
|
35 |
self.cpu_memory_usage.append(memory.percent)
|
36 |
-
self.cpu_memory_usage_str =
|
|
|
|
|
37 |
|
38 |
def update_gpu(self) -> None:
|
39 |
if not self.devices:
|
@@ -41,36 +40,36 @@ class SystemMonitor:
|
|
41 |
device = self.devices[0]
|
42 |
self.gpu_memory_usage.append(device.memory_percent())
|
43 |
self.gpu_util.append(device.gpu_utilization())
|
44 |
-
self.gpu_memory_usage_str = f
|
45 |
-
self.gpu_util_str = f
|
46 |
|
47 |
def get_json(self) -> dict[str, str]:
|
48 |
return {
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
}
|
53 |
|
54 |
def get_graph_data(self) -> dict[str, list[int | float]]:
|
55 |
return {
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
}
|
61 |
|
62 |
def get_graph(self):
|
63 |
df = pd.DataFrame(self.get_graph_data())
|
64 |
-
return px.line(
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
|
75 |
|
76 |
def create_monitor_demo() -> gr.Blocks:
|
@@ -82,6 +81,6 @@ def create_monitor_demo() -> gr.Blocks:
|
|
82 |
return demo
|
83 |
|
84 |
|
85 |
-
if __name__ ==
|
86 |
demo = create_monitor_demo()
|
87 |
demo.queue(api_open=False).launch()
|
|
|
16 |
|
17 |
def __init__(self):
|
18 |
self.devices = nvitop.Device.all()
|
19 |
+
self.cpu_memory_usage = collections.deque([0 for _ in range(self.MAX_SIZE)], maxlen=self.MAX_SIZE)
|
20 |
+
self.cpu_memory_usage_str = ""
|
21 |
+
self.gpu_memory_usage = collections.deque([0 for _ in range(self.MAX_SIZE)], maxlen=self.MAX_SIZE)
|
22 |
+
self.gpu_util = collections.deque([0 for _ in range(self.MAX_SIZE)], maxlen=self.MAX_SIZE)
|
23 |
+
self.gpu_memory_usage_str = ""
|
24 |
+
self.gpu_util_str = ""
|
|
|
|
|
|
|
25 |
|
26 |
def update(self) -> None:
|
27 |
self.update_cpu()
|
|
|
30 |
def update_cpu(self) -> None:
|
31 |
memory = psutil.virtual_memory()
|
32 |
self.cpu_memory_usage.append(memory.percent)
|
33 |
+
self.cpu_memory_usage_str = (
|
34 |
+
f"{memory.used / 1024**3:0.2f}GiB / {memory.total / 1024**3:0.2f}GiB ({memory.percent}%)"
|
35 |
+
)
|
36 |
|
37 |
def update_gpu(self) -> None:
|
38 |
if not self.devices:
|
|
|
40 |
device = self.devices[0]
|
41 |
self.gpu_memory_usage.append(device.memory_percent())
|
42 |
self.gpu_util.append(device.gpu_utilization())
|
43 |
+
self.gpu_memory_usage_str = f"{device.memory_usage()} ({device.memory_percent()}%)"
|
44 |
+
self.gpu_util_str = f"{device.gpu_utilization()}%"
|
45 |
|
46 |
def get_json(self) -> dict[str, str]:
|
47 |
return {
|
48 |
+
"CPU memory usage": self.cpu_memory_usage_str,
|
49 |
+
"GPU memory usage": self.gpu_memory_usage_str,
|
50 |
+
"GPU Util": self.gpu_util_str,
|
51 |
}
|
52 |
|
53 |
def get_graph_data(self) -> dict[str, list[int | float]]:
|
54 |
return {
|
55 |
+
"index": list(range(-self.MAX_SIZE + 1, 1)),
|
56 |
+
"CPU memory usage": self.cpu_memory_usage,
|
57 |
+
"GPU memory usage": self.gpu_memory_usage,
|
58 |
+
"GPU Util": self.gpu_util,
|
59 |
}
|
60 |
|
61 |
def get_graph(self):
|
62 |
df = pd.DataFrame(self.get_graph_data())
|
63 |
+
return px.line(
|
64 |
+
df,
|
65 |
+
x="index",
|
66 |
+
y=[
|
67 |
+
"CPU memory usage",
|
68 |
+
"GPU memory usage",
|
69 |
+
"GPU Util",
|
70 |
+
],
|
71 |
+
range_y=[-5, 105],
|
72 |
+
).update_layout(xaxis_title="Time", yaxis_title="Percentage")
|
73 |
|
74 |
|
75 |
def create_monitor_demo() -> gr.Blocks:
|
|
|
81 |
return demo
|
82 |
|
83 |
|
84 |
+
if __name__ == "__main__":
|
85 |
demo = create_monitor_demo()
|
86 |
demo.queue(api_open=False).launch()
|
app_training.py
CHANGED
@@ -11,145 +11,120 @@ from inference import InferencePipeline
|
|
11 |
from trainer import Trainer
|
12 |
|
13 |
|
14 |
-
def create_training_demo(
|
15 |
-
|
16 |
-
|
17 |
def read_log() -> str:
|
18 |
with open(trainer.log_file) as f:
|
19 |
lines = f.readlines()
|
20 |
-
return
|
21 |
|
22 |
with gr.Blocks() as demo:
|
23 |
with gr.Row():
|
24 |
with gr.Column():
|
25 |
with gr.Box():
|
26 |
-
gr.Markdown(
|
27 |
-
training_video = gr.File(label=
|
28 |
-
training_prompt = gr.Textbox(
|
29 |
-
|
30 |
-
|
31 |
-
placeholder='A man is surfing')
|
32 |
-
gr.Markdown('''
|
33 |
- Upload a video and write a `Training Prompt` that describes the video.
|
34 |
-
|
|
|
35 |
|
36 |
with gr.Column():
|
37 |
with gr.Box():
|
38 |
-
gr.Markdown(
|
39 |
with gr.Row():
|
40 |
-
base_model = gr.Text(
|
41 |
-
|
42 |
-
value=
|
43 |
-
|
44 |
-
resolution = gr.Dropdown(choices=['512', '768'],
|
45 |
-
value='512',
|
46 |
-
label='Resolution',
|
47 |
-
visible=False)
|
48 |
|
49 |
-
hf_token = gr.Text(
|
50 |
-
|
51 |
-
|
52 |
-
with gr.Accordion(label=
|
53 |
-
num_training_steps = gr.Number(
|
54 |
-
|
55 |
-
value=300,
|
56 |
-
precision=0)
|
57 |
-
learning_rate = gr.Number(label='Learning Rate',
|
58 |
-
value=0.000035)
|
59 |
gradient_accumulation = gr.Number(
|
60 |
-
label=
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
fp16 = gr.Checkbox(label='FP16', value=True)
|
70 |
-
use_8bit_adam = gr.Checkbox(label='Use 8bit Adam',
|
71 |
-
value=False)
|
72 |
-
checkpointing_steps = gr.Number(
|
73 |
-
label='Checkpointing Steps',
|
74 |
-
value=1000,
|
75 |
-
precision=0)
|
76 |
-
validation_epochs = gr.Number(
|
77 |
-
label='Validation Epochs', value=100, precision=0)
|
78 |
-
gr.Markdown('''
|
79 |
- The base model must be a Stable Diffusion model compatible with [diffusers](https://github.com/huggingface/diffusers) library.
|
80 |
- Expected time to train a model for 300 steps: ~20 minutes with T4
|
81 |
- You can check the training status by pressing the "Open logs" button if you are running this on your Space.
|
82 |
-
|
|
|
83 |
|
84 |
with gr.Row():
|
85 |
with gr.Column():
|
86 |
-
gr.Markdown(
|
87 |
-
output_model_name = gr.Text(label=
|
88 |
-
placeholder='The surfer man',
|
89 |
-
max_lines=1)
|
90 |
validation_prompt = gr.Text(
|
91 |
-
label=
|
92 |
-
|
93 |
-
'prompt to test the model, e.g: a dog is surfing')
|
94 |
with gr.Column():
|
95 |
-
gr.Markdown(
|
96 |
with gr.Row():
|
97 |
-
upload_to_hub = gr.Checkbox(label=
|
98 |
-
|
99 |
-
|
100 |
-
delete_existing_repo = gr.Checkbox(
|
101 |
-
label='Delete existing repo of the same name',
|
102 |
-
value=False)
|
103 |
upload_to = gr.Radio(
|
104 |
-
label=
|
105 |
choices=[_.value for _ in UploadTarget],
|
106 |
-
value=UploadTarget.MODEL_LIBRARY.value
|
|
|
107 |
|
108 |
pause_space_after_training = gr.Checkbox(
|
109 |
-
label=
|
110 |
value=False,
|
111 |
-
interactive=bool(os.getenv(
|
112 |
-
visible=False
|
113 |
-
|
114 |
-
|
115 |
|
116 |
with gr.Box():
|
117 |
-
gr.Text(label=
|
118 |
-
value=read_log,
|
119 |
-
lines=10,
|
120 |
-
max_lines=10,
|
121 |
-
every=1)
|
122 |
|
123 |
if pipe is not None:
|
124 |
run_button.click(fn=pipe.clear)
|
125 |
-
run_button.click(
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
|
|
149 |
return demo
|
150 |
|
151 |
|
152 |
-
if __name__ ==
|
153 |
trainer = Trainer()
|
154 |
demo = create_training_demo(trainer)
|
155 |
demo.queue(api_open=False, max_size=1).launch()
|
|
|
11 |
from trainer import Trainer
|
12 |
|
13 |
|
14 |
+
def create_training_demo(
|
15 |
+
trainer: Trainer, pipe: InferencePipeline | None = None, disable_run_button: bool = False
|
16 |
+
) -> gr.Blocks:
|
17 |
def read_log() -> str:
|
18 |
with open(trainer.log_file) as f:
|
19 |
lines = f.readlines()
|
20 |
+
return "".join(lines[-10:])
|
21 |
|
22 |
with gr.Blocks() as demo:
|
23 |
with gr.Row():
|
24 |
with gr.Column():
|
25 |
with gr.Box():
|
26 |
+
gr.Markdown("Training Data")
|
27 |
+
training_video = gr.File(label="Training video")
|
28 |
+
training_prompt = gr.Textbox(label="Training prompt", max_lines=1, placeholder="A man is surfing")
|
29 |
+
gr.Markdown(
|
30 |
+
"""
|
|
|
|
|
31 |
- Upload a video and write a `Training Prompt` that describes the video.
|
32 |
+
"""
|
33 |
+
)
|
34 |
|
35 |
with gr.Column():
|
36 |
with gr.Box():
|
37 |
+
gr.Markdown("Training Parameters")
|
38 |
with gr.Row():
|
39 |
+
base_model = gr.Text(label="Base Model", value="CompVis/stable-diffusion-v1-4", max_lines=1)
|
40 |
+
resolution = gr.Dropdown(
|
41 |
+
choices=["512", "768"], value="512", label="Resolution", visible=False
|
42 |
+
)
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
hf_token = gr.Text(
|
45 |
+
label="Hugging Face Write Token", type="password", visible=os.getenv("HF_TOKEN") is None
|
46 |
+
)
|
47 |
+
with gr.Accordion(label="Advanced options", open=False):
|
48 |
+
num_training_steps = gr.Number(label="Number of Training Steps", value=300, precision=0)
|
49 |
+
learning_rate = gr.Number(label="Learning Rate", value=0.000035)
|
|
|
|
|
|
|
|
|
50 |
gradient_accumulation = gr.Number(
|
51 |
+
label="Number of Gradient Accumulation", value=1, precision=0
|
52 |
+
)
|
53 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=100000, step=1, randomize=True, value=0)
|
54 |
+
fp16 = gr.Checkbox(label="FP16", value=True)
|
55 |
+
use_8bit_adam = gr.Checkbox(label="Use 8bit Adam", value=False)
|
56 |
+
checkpointing_steps = gr.Number(label="Checkpointing Steps", value=1000, precision=0)
|
57 |
+
validation_epochs = gr.Number(label="Validation Epochs", value=100, precision=0)
|
58 |
+
gr.Markdown(
|
59 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
- The base model must be a Stable Diffusion model compatible with [diffusers](https://github.com/huggingface/diffusers) library.
|
61 |
- Expected time to train a model for 300 steps: ~20 minutes with T4
|
62 |
- You can check the training status by pressing the "Open logs" button if you are running this on your Space.
|
63 |
+
"""
|
64 |
+
)
|
65 |
|
66 |
with gr.Row():
|
67 |
with gr.Column():
|
68 |
+
gr.Markdown("Output Model")
|
69 |
+
output_model_name = gr.Text(label="Name of your model", placeholder="The surfer man", max_lines=1)
|
|
|
|
|
70 |
validation_prompt = gr.Text(
|
71 |
+
label="Validation Prompt", placeholder="prompt to test the model, e.g: a dog is surfing"
|
72 |
+
)
|
|
|
73 |
with gr.Column():
|
74 |
+
gr.Markdown("Upload Settings")
|
75 |
with gr.Row():
|
76 |
+
upload_to_hub = gr.Checkbox(label="Upload model to Hub", value=True)
|
77 |
+
use_private_repo = gr.Checkbox(label="Private", value=True)
|
78 |
+
delete_existing_repo = gr.Checkbox(label="Delete existing repo of the same name", value=False)
|
|
|
|
|
|
|
79 |
upload_to = gr.Radio(
|
80 |
+
label="Upload to",
|
81 |
choices=[_.value for _ in UploadTarget],
|
82 |
+
value=UploadTarget.MODEL_LIBRARY.value,
|
83 |
+
)
|
84 |
|
85 |
pause_space_after_training = gr.Checkbox(
|
86 |
+
label="Pause this Space after training",
|
87 |
value=False,
|
88 |
+
interactive=bool(os.getenv("SPACE_ID")),
|
89 |
+
visible=False,
|
90 |
+
)
|
91 |
+
run_button = gr.Button("Start Training", interactive=not disable_run_button)
|
92 |
|
93 |
with gr.Box():
|
94 |
+
gr.Text(label="Log", value=read_log, lines=10, max_lines=10, every=1)
|
|
|
|
|
|
|
|
|
95 |
|
96 |
if pipe is not None:
|
97 |
run_button.click(fn=pipe.clear)
|
98 |
+
run_button.click(
|
99 |
+
fn=trainer.run,
|
100 |
+
inputs=[
|
101 |
+
training_video,
|
102 |
+
training_prompt,
|
103 |
+
output_model_name,
|
104 |
+
delete_existing_repo,
|
105 |
+
validation_prompt,
|
106 |
+
base_model,
|
107 |
+
resolution,
|
108 |
+
num_training_steps,
|
109 |
+
learning_rate,
|
110 |
+
gradient_accumulation,
|
111 |
+
seed,
|
112 |
+
fp16,
|
113 |
+
use_8bit_adam,
|
114 |
+
checkpointing_steps,
|
115 |
+
validation_epochs,
|
116 |
+
upload_to_hub,
|
117 |
+
use_private_repo,
|
118 |
+
delete_existing_repo,
|
119 |
+
upload_to,
|
120 |
+
pause_space_after_training,
|
121 |
+
hf_token,
|
122 |
+
],
|
123 |
+
)
|
124 |
return demo
|
125 |
|
126 |
|
127 |
+
if __name__ == "__main__":
|
128 |
trainer = Trainer()
|
129 |
demo = create_training_demo(trainer)
|
130 |
demo.queue(api_open=False, max_size=1).launch()
|
app_upload.py
CHANGED
@@ -21,49 +21,49 @@ def create_upload_demo(disable_run_button: bool = False) -> gr.Blocks:
|
|
21 |
|
22 |
with gr.Blocks() as demo:
|
23 |
with gr.Box():
|
24 |
-
gr.Markdown(
|
25 |
-
reload_button = gr.Button(
|
26 |
model_dir = gr.Dropdown(
|
27 |
-
label=
|
28 |
-
|
29 |
-
value=model_dirs[0] if model_dirs else None)
|
30 |
with gr.Box():
|
31 |
-
gr.Markdown(
|
32 |
with gr.Row():
|
33 |
-
use_private_repo = gr.Checkbox(label=
|
34 |
-
delete_existing_repo = gr.Checkbox(
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
- You can upload your trained model to your personal profile (i.e. `https://huggingface.co/{{your_username}}/{{model_name}}`) or to the public [Tune-A-Video Library](https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}) (i.e. `https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}/{{model_name}}`).
|
46 |
-
|
|
|
47 |
with gr.Box():
|
48 |
-
gr.Markdown(
|
49 |
output_message = gr.Markdown()
|
50 |
|
51 |
-
reload_button.click(fn=load_local_model_list,
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
return demo
|
65 |
|
66 |
|
67 |
-
if __name__ ==
|
68 |
demo = create_upload_demo()
|
69 |
demo.queue(api_open=False, max_size=1).launch()
|
|
|
21 |
|
22 |
with gr.Blocks() as demo:
|
23 |
with gr.Box():
|
24 |
+
gr.Markdown("Local Models")
|
25 |
+
reload_button = gr.Button("Reload Model List")
|
26 |
model_dir = gr.Dropdown(
|
27 |
+
label="Model names", choices=model_dirs, value=model_dirs[0] if model_dirs else None
|
28 |
+
)
|
|
|
29 |
with gr.Box():
|
30 |
+
gr.Markdown("Upload Settings")
|
31 |
with gr.Row():
|
32 |
+
use_private_repo = gr.Checkbox(label="Private", value=True)
|
33 |
+
delete_existing_repo = gr.Checkbox(label="Delete existing repo of the same name", value=False)
|
34 |
+
upload_to = gr.Radio(
|
35 |
+
label="Upload to", choices=[_.value for _ in UploadTarget], value=UploadTarget.MODEL_LIBRARY.value
|
36 |
+
)
|
37 |
+
model_name = gr.Textbox(label="Model Name")
|
38 |
+
hf_token = gr.Text(
|
39 |
+
label="Hugging Face Write Token", type="password", visible=os.getenv("HF_TOKEN") is None
|
40 |
+
)
|
41 |
+
upload_button = gr.Button("Upload", interactive=not disable_run_button)
|
42 |
+
gr.Markdown(
|
43 |
+
f"""
|
44 |
- You can upload your trained model to your personal profile (i.e. `https://huggingface.co/{{your_username}}/{{model_name}}`) or to the public [Tune-A-Video Library](https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}) (i.e. `https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}/{{model_name}}`).
|
45 |
+
"""
|
46 |
+
)
|
47 |
with gr.Box():
|
48 |
+
gr.Markdown("Output message")
|
49 |
output_message = gr.Markdown()
|
50 |
|
51 |
+
reload_button.click(fn=load_local_model_list, inputs=None, outputs=model_dir)
|
52 |
+
upload_button.click(
|
53 |
+
fn=upload,
|
54 |
+
inputs=[
|
55 |
+
model_dir,
|
56 |
+
model_name,
|
57 |
+
upload_to,
|
58 |
+
use_private_repo,
|
59 |
+
delete_existing_repo,
|
60 |
+
hf_token,
|
61 |
+
],
|
62 |
+
outputs=output_message,
|
63 |
+
)
|
64 |
return demo
|
65 |
|
66 |
|
67 |
+
if __name__ == "__main__":
|
68 |
demo = create_upload_demo()
|
69 |
demo.queue(api_open=False, max_size=1).launch()
|
constants.py
CHANGED
@@ -2,10 +2,12 @@ import enum
|
|
2 |
|
3 |
|
4 |
class UploadTarget(enum.Enum):
|
5 |
-
PERSONAL_PROFILE =
|
6 |
-
MODEL_LIBRARY =
|
7 |
|
8 |
|
9 |
-
MODEL_LIBRARY_ORG_NAME =
|
10 |
-
SAMPLE_MODEL_REPO =
|
11 |
-
URL_TO_JOIN_MODEL_LIBRARY_ORG =
|
|
|
|
|
|
2 |
|
3 |
|
4 |
class UploadTarget(enum.Enum):
|
5 |
+
PERSONAL_PROFILE = "Personal Profile"
|
6 |
+
MODEL_LIBRARY = "Tune-A-Video Library"
|
7 |
|
8 |
|
9 |
+
MODEL_LIBRARY_ORG_NAME = "Tune-A-Video-library"
|
10 |
+
SAMPLE_MODEL_REPO = "Tune-A-Video-library/a-man-is-surfing"
|
11 |
+
URL_TO_JOIN_MODEL_LIBRARY_ORG = (
|
12 |
+
"https://huggingface.co/organizations/Tune-A-Video-library/share/YjTcaNJmKyeHFpMBioHhzBcTzCYddVErEk"
|
13 |
+
)
|
inference.py
CHANGED
@@ -13,7 +13,7 @@ from diffusers.utils.import_utils import is_xformers_available
|
|
13 |
from einops import rearrange
|
14 |
from huggingface_hub import ModelCard
|
15 |
|
16 |
-
sys.path.append(
|
17 |
|
18 |
from tuneavideo.models.unet import UNet3DConditionModel
|
19 |
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
|
@@ -23,8 +23,7 @@ class InferencePipeline:
|
|
23 |
def __init__(self, hf_token: str | None = None):
|
24 |
self.hf_token = hf_token
|
25 |
self.pipe = None
|
26 |
-
self.device = torch.device(
|
27 |
-
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
28 |
self.model_id = None
|
29 |
|
30 |
def clear(self) -> None:
|
@@ -39,10 +38,9 @@ class InferencePipeline:
|
|
39 |
return pathlib.Path(model_id).exists()
|
40 |
|
41 |
@staticmethod
|
42 |
-
def get_model_card(model_id: str,
|
43 |
-
hf_token: str | None = None) -> ModelCard:
|
44 |
if InferencePipeline.check_if_model_is_local(model_id):
|
45 |
-
card_path = (pathlib.Path(model_id) /
|
46 |
else:
|
47 |
card_path = model_id
|
48 |
return ModelCard.load(card_path, token=hf_token)
|
@@ -57,14 +55,11 @@ class InferencePipeline:
|
|
57 |
return
|
58 |
base_model_id = self.get_base_model_info(model_id, self.hf_token)
|
59 |
unet = UNet3DConditionModel.from_pretrained(
|
60 |
-
model_id,
|
61 |
-
|
62 |
-
|
63 |
-
use_auth_token=self.hf_token
|
64 |
-
|
65 |
-
unet=unet,
|
66 |
-
torch_dtype=torch.float16,
|
67 |
-
use_auth_token=self.hf_token)
|
68 |
pipe = pipe.to(self.device)
|
69 |
if is_xformers_available():
|
70 |
pipe.unet.enable_xformers_memory_efficient_attention()
|
@@ -82,7 +77,7 @@ class InferencePipeline:
|
|
82 |
guidance_scale: float,
|
83 |
) -> PIL.Image.Image:
|
84 |
if not torch.cuda.is_available():
|
85 |
-
raise gr.Error(
|
86 |
|
87 |
self.load_pipe(model_id)
|
88 |
|
@@ -97,10 +92,10 @@ class InferencePipeline:
|
|
97 |
generator=generator,
|
98 |
) # type: ignore
|
99 |
|
100 |
-
frames = rearrange(out.videos[0],
|
101 |
frames = (frames * 255).to(torch.uint8).numpy()
|
102 |
|
103 |
-
out_file = tempfile.NamedTemporaryFile(suffix=
|
104 |
writer = imageio.get_writer(out_file.name, fps=fps)
|
105 |
for frame in frames:
|
106 |
writer.append_data(frame)
|
|
|
13 |
from einops import rearrange
|
14 |
from huggingface_hub import ModelCard
|
15 |
|
16 |
+
sys.path.append("Tune-A-Video")
|
17 |
|
18 |
from tuneavideo.models.unet import UNet3DConditionModel
|
19 |
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
|
|
|
23 |
def __init__(self, hf_token: str | None = None):
|
24 |
self.hf_token = hf_token
|
25 |
self.pipe = None
|
26 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
27 |
self.model_id = None
|
28 |
|
29 |
def clear(self) -> None:
|
|
|
38 |
return pathlib.Path(model_id).exists()
|
39 |
|
40 |
@staticmethod
|
41 |
+
def get_model_card(model_id: str, hf_token: str | None = None) -> ModelCard:
|
|
|
42 |
if InferencePipeline.check_if_model_is_local(model_id):
|
43 |
+
card_path = (pathlib.Path(model_id) / "README.md").as_posix()
|
44 |
else:
|
45 |
card_path = model_id
|
46 |
return ModelCard.load(card_path, token=hf_token)
|
|
|
55 |
return
|
56 |
base_model_id = self.get_base_model_info(model_id, self.hf_token)
|
57 |
unet = UNet3DConditionModel.from_pretrained(
|
58 |
+
model_id, subfolder="unet", torch_dtype=torch.float16, use_auth_token=self.hf_token
|
59 |
+
)
|
60 |
+
pipe = TuneAVideoPipeline.from_pretrained(
|
61 |
+
base_model_id, unet=unet, torch_dtype=torch.float16, use_auth_token=self.hf_token
|
62 |
+
)
|
|
|
|
|
|
|
63 |
pipe = pipe.to(self.device)
|
64 |
if is_xformers_available():
|
65 |
pipe.unet.enable_xformers_memory_efficient_attention()
|
|
|
77 |
guidance_scale: float,
|
78 |
) -> PIL.Image.Image:
|
79 |
if not torch.cuda.is_available():
|
80 |
+
raise gr.Error("CUDA is not available.")
|
81 |
|
82 |
self.load_pipe(model_id)
|
83 |
|
|
|
92 |
generator=generator,
|
93 |
) # type: ignore
|
94 |
|
95 |
+
frames = rearrange(out.videos[0], "c t h w -> t h w c")
|
96 |
frames = (frames * 255).to(torch.uint8).numpy()
|
97 |
|
98 |
+
out_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
99 |
writer = imageio.get_writer(out_file.name, fps=fps)
|
100 |
for frame in frames:
|
101 |
writer.append_data(frame)
|
trainer.py
CHANGED
@@ -16,26 +16,24 @@ from omegaconf import OmegaConf
|
|
16 |
from uploader import upload
|
17 |
from utils import save_model_card
|
18 |
|
19 |
-
sys.path.append(
|
20 |
|
21 |
|
22 |
class Trainer:
|
23 |
def __init__(self):
|
24 |
-
self.checkpoint_dir = pathlib.Path(
|
25 |
self.checkpoint_dir.mkdir(exist_ok=True)
|
26 |
|
27 |
-
self.log_file = pathlib.Path(
|
28 |
self.log_file.touch(exist_ok=True)
|
29 |
|
30 |
def download_base_model(self, base_model_id: str) -> str:
|
31 |
model_dir = self.checkpoint_dir / base_model_id
|
32 |
if not model_dir.exists():
|
33 |
-
org_name = base_model_id.split(
|
34 |
org_dir = self.checkpoint_dir / org_name
|
35 |
org_dir.mkdir(exist_ok=True)
|
36 |
-
subprocess.run(shlex.split(
|
37 |
-
f'git clone https://huggingface.co/{base_model_id}'),
|
38 |
-
cwd=org_dir)
|
39 |
return model_dir.as_posix()
|
40 |
|
41 |
def run(
|
@@ -63,28 +61,28 @@ class Trainer:
|
|
63 |
hf_token: str,
|
64 |
) -> None:
|
65 |
if not torch.cuda.is_available():
|
66 |
-
raise RuntimeError(
|
67 |
if training_video is None:
|
68 |
-
raise ValueError(
|
69 |
if not training_prompt:
|
70 |
-
raise ValueError(
|
71 |
if not validation_prompt:
|
72 |
-
raise ValueError(
|
73 |
|
74 |
resolution = int(resolution_s)
|
75 |
|
76 |
if not output_model_name:
|
77 |
-
timestamp = datetime.datetime.now().strftime(
|
78 |
-
output_model_name = f
|
79 |
output_model_name = slugify.slugify(output_model_name)
|
80 |
|
81 |
repo_dir = pathlib.Path(__file__).parent
|
82 |
-
output_dir = repo_dir /
|
83 |
if overwrite_existing_model or upload_to_hub:
|
84 |
shutil.rmtree(output_dir, ignore_errors=True)
|
85 |
output_dir.mkdir(parents=True)
|
86 |
|
87 |
-
config = OmegaConf.load(
|
88 |
config.pretrained_model_path = self.download_base_model(base_model)
|
89 |
config.output_dir = output_dir.as_posix()
|
90 |
config.train_data.video_path = training_video.name # type: ignore
|
@@ -107,39 +105,40 @@ class Trainer:
|
|
107 |
config.checkpointing_steps = checkpointing_steps
|
108 |
config.validation_steps = validation_epochs
|
109 |
config.seed = seed
|
110 |
-
config.mixed_precision =
|
111 |
config.use_8bit_adam = use_8bit_adam
|
112 |
|
113 |
-
config_path = output_dir /
|
114 |
-
with open(config_path,
|
115 |
OmegaConf.save(config, f)
|
116 |
|
117 |
-
command = f
|
118 |
-
with open(self.log_file,
|
119 |
-
subprocess.run(shlex.split(command),
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
f.write('Training completed!\n')
|
131 |
|
132 |
if upload_to_hub:
|
133 |
-
upload_message = upload(
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
140 |
f.write(upload_message)
|
141 |
|
142 |
if pause_space_after_training:
|
143 |
-
if space_id := os.getenv(
|
144 |
-
api = HfApi(token=os.getenv(
|
145 |
api.pause_space(repo_id=space_id)
|
|
|
16 |
from uploader import upload
|
17 |
from utils import save_model_card
|
18 |
|
19 |
+
sys.path.append("Tune-A-Video")
|
20 |
|
21 |
|
22 |
class Trainer:
|
23 |
def __init__(self):
|
24 |
+
self.checkpoint_dir = pathlib.Path("checkpoints")
|
25 |
self.checkpoint_dir.mkdir(exist_ok=True)
|
26 |
|
27 |
+
self.log_file = pathlib.Path("log.txt")
|
28 |
self.log_file.touch(exist_ok=True)
|
29 |
|
30 |
def download_base_model(self, base_model_id: str) -> str:
|
31 |
model_dir = self.checkpoint_dir / base_model_id
|
32 |
if not model_dir.exists():
|
33 |
+
org_name = base_model_id.split("/")[0]
|
34 |
org_dir = self.checkpoint_dir / org_name
|
35 |
org_dir.mkdir(exist_ok=True)
|
36 |
+
subprocess.run(shlex.split(f"git clone https://huggingface.co/{base_model_id}"), cwd=org_dir)
|
|
|
|
|
37 |
return model_dir.as_posix()
|
38 |
|
39 |
def run(
|
|
|
61 |
hf_token: str,
|
62 |
) -> None:
|
63 |
if not torch.cuda.is_available():
|
64 |
+
raise RuntimeError("CUDA is not available.")
|
65 |
if training_video is None:
|
66 |
+
raise ValueError("You need to upload a video.")
|
67 |
if not training_prompt:
|
68 |
+
raise ValueError("The training prompt is missing.")
|
69 |
if not validation_prompt:
|
70 |
+
raise ValueError("The validation prompt is missing.")
|
71 |
|
72 |
resolution = int(resolution_s)
|
73 |
|
74 |
if not output_model_name:
|
75 |
+
timestamp = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
|
76 |
+
output_model_name = f"tune-a-video-{timestamp}"
|
77 |
output_model_name = slugify.slugify(output_model_name)
|
78 |
|
79 |
repo_dir = pathlib.Path(__file__).parent
|
80 |
+
output_dir = repo_dir / "experiments" / output_model_name
|
81 |
if overwrite_existing_model or upload_to_hub:
|
82 |
shutil.rmtree(output_dir, ignore_errors=True)
|
83 |
output_dir.mkdir(parents=True)
|
84 |
|
85 |
+
config = OmegaConf.load("Tune-A-Video/configs/man-surfing.yaml")
|
86 |
config.pretrained_model_path = self.download_base_model(base_model)
|
87 |
config.output_dir = output_dir.as_posix()
|
88 |
config.train_data.video_path = training_video.name # type: ignore
|
|
|
105 |
config.checkpointing_steps = checkpointing_steps
|
106 |
config.validation_steps = validation_epochs
|
107 |
config.seed = seed
|
108 |
+
config.mixed_precision = "fp16" if fp16 else ""
|
109 |
config.use_8bit_adam = use_8bit_adam
|
110 |
|
111 |
+
config_path = output_dir / "config.yaml"
|
112 |
+
with open(config_path, "w") as f:
|
113 |
OmegaConf.save(config, f)
|
114 |
|
115 |
+
command = f"accelerate launch Tune-A-Video/train_tuneavideo.py --config {config_path}"
|
116 |
+
with open(self.log_file, "w") as f:
|
117 |
+
subprocess.run(shlex.split(command), stdout=f, stderr=subprocess.STDOUT, text=True)
|
118 |
+
save_model_card(
|
119 |
+
save_dir=output_dir,
|
120 |
+
base_model=base_model,
|
121 |
+
training_prompt=training_prompt,
|
122 |
+
test_prompt=validation_prompt,
|
123 |
+
test_image_dir="samples",
|
124 |
+
)
|
125 |
+
|
126 |
+
with open(self.log_file, "a") as f:
|
127 |
+
f.write("Training completed!\n")
|
|
|
128 |
|
129 |
if upload_to_hub:
|
130 |
+
upload_message = upload(
|
131 |
+
local_folder_path=output_dir.as_posix(),
|
132 |
+
target_repo_name=output_model_name,
|
133 |
+
upload_to=upload_to,
|
134 |
+
private=use_private_repo,
|
135 |
+
delete_existing_repo=delete_existing_repo,
|
136 |
+
hf_token=hf_token,
|
137 |
+
)
|
138 |
+
with open(self.log_file, "a") as f:
|
139 |
f.write(upload_message)
|
140 |
|
141 |
if pause_space_after_training:
|
142 |
+
if space_id := os.getenv("SPACE_ID"):
|
143 |
+
api = HfApi(token=os.getenv("HF_TOKEN") or hf_token)
|
144 |
api.pause_space(repo_id=space_id)
|
uploader.py
CHANGED
@@ -8,24 +8,30 @@ import subprocess
|
|
8 |
import slugify
|
9 |
from huggingface_hub import HfApi
|
10 |
|
11 |
-
from constants import (
|
12 |
-
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
def join_model_library_org(hf_token: str) -> None:
|
16 |
subprocess.run(
|
17 |
shlex.split(
|
18 |
f'curl -X POST -H "Authorization: Bearer {hf_token}" -H "Content-Type: application/json" {URL_TO_JOIN_MODEL_LIBRARY_ORG}'
|
19 |
-
)
|
|
|
20 |
|
21 |
|
22 |
-
def upload(
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
hf_token =
|
|
|
|
|
29 |
if not hf_token:
|
30 |
raise ValueError
|
31 |
api = HfApi(token=hf_token)
|
@@ -37,27 +43,24 @@ def upload(local_folder_path: str,
|
|
37 |
target_repo_name = slugify.slugify(target_repo_name)
|
38 |
|
39 |
if upload_to == UploadTarget.PERSONAL_PROFILE.value:
|
40 |
-
organization = api.whoami()[
|
41 |
elif upload_to == UploadTarget.MODEL_LIBRARY.value:
|
42 |
organization = MODEL_LIBRARY_ORG_NAME
|
43 |
join_model_library_org(hf_token)
|
44 |
else:
|
45 |
raise ValueError
|
46 |
|
47 |
-
repo_id = f
|
48 |
if delete_existing_repo:
|
49 |
try:
|
50 |
-
api.delete_repo(repo_id, repo_type=
|
51 |
except Exception:
|
52 |
pass
|
53 |
try:
|
54 |
-
api.create_repo(repo_id, repo_type=
|
55 |
-
api.upload_folder(repo_id=repo_id,
|
56 |
-
|
57 |
-
|
58 |
-
repo_type='model')
|
59 |
-
url = f'https://huggingface.co/{repo_id}'
|
60 |
-
message = f'Your model was successfully uploaded to {url}.'
|
61 |
except Exception as e:
|
62 |
message = str(e)
|
63 |
return message
|
|
|
8 |
import slugify
|
9 |
from huggingface_hub import HfApi
|
10 |
|
11 |
+
from constants import (
|
12 |
+
MODEL_LIBRARY_ORG_NAME,
|
13 |
+
URL_TO_JOIN_MODEL_LIBRARY_ORG,
|
14 |
+
UploadTarget,
|
15 |
+
)
|
16 |
|
17 |
|
18 |
def join_model_library_org(hf_token: str) -> None:
|
19 |
subprocess.run(
|
20 |
shlex.split(
|
21 |
f'curl -X POST -H "Authorization: Bearer {hf_token}" -H "Content-Type: application/json" {URL_TO_JOIN_MODEL_LIBRARY_ORG}'
|
22 |
+
)
|
23 |
+
)
|
24 |
|
25 |
|
26 |
+
def upload(
|
27 |
+
local_folder_path: str,
|
28 |
+
target_repo_name: str,
|
29 |
+
upload_to: str,
|
30 |
+
private: bool = True,
|
31 |
+
delete_existing_repo: bool = False,
|
32 |
+
hf_token: str = "",
|
33 |
+
) -> str:
|
34 |
+
hf_token = os.getenv("HF_TOKEN") or hf_token
|
35 |
if not hf_token:
|
36 |
raise ValueError
|
37 |
api = HfApi(token=hf_token)
|
|
|
43 |
target_repo_name = slugify.slugify(target_repo_name)
|
44 |
|
45 |
if upload_to == UploadTarget.PERSONAL_PROFILE.value:
|
46 |
+
organization = api.whoami()["name"]
|
47 |
elif upload_to == UploadTarget.MODEL_LIBRARY.value:
|
48 |
organization = MODEL_LIBRARY_ORG_NAME
|
49 |
join_model_library_org(hf_token)
|
50 |
else:
|
51 |
raise ValueError
|
52 |
|
53 |
+
repo_id = f"{organization}/{target_repo_name}"
|
54 |
if delete_existing_repo:
|
55 |
try:
|
56 |
+
api.delete_repo(repo_id, repo_type="model")
|
57 |
except Exception:
|
58 |
pass
|
59 |
try:
|
60 |
+
api.create_repo(repo_id, repo_type="model", private=private)
|
61 |
+
api.upload_folder(repo_id=repo_id, folder_path=local_folder_path, path_in_repo=".", repo_type="model")
|
62 |
+
url = f"https://huggingface.co/{repo_id}"
|
63 |
+
message = f"Your model was successfully uploaded to {url}."
|
|
|
|
|
|
|
64 |
except Exception as e:
|
65 |
message = str(e)
|
66 |
return message
|
utils.py
CHANGED
@@ -5,14 +5,11 @@ import pathlib
|
|
5 |
|
6 |
def find_exp_dirs() -> list[str]:
|
7 |
repo_dir = pathlib.Path(__file__).parent
|
8 |
-
exp_root_dir = repo_dir /
|
9 |
if not exp_root_dir.exists():
|
10 |
return []
|
11 |
-
exp_dirs = sorted(exp_root_dir.glob(
|
12 |
-
exp_dirs = [
|
13 |
-
exp_dir for exp_dir in exp_dirs
|
14 |
-
if (exp_dir / 'model_index.json').exists()
|
15 |
-
]
|
16 |
return [path.relative_to(repo_dir).as_posix() for path in exp_dirs]
|
17 |
|
18 |
|
@@ -20,21 +17,21 @@ def save_model_card(
|
|
20 |
save_dir: pathlib.Path,
|
21 |
base_model: str,
|
22 |
training_prompt: str,
|
23 |
-
test_prompt: str =
|
24 |
-
test_image_dir: str =
|
25 |
) -> None:
|
26 |
-
image_str =
|
27 |
if test_prompt and test_image_dir:
|
28 |
-
image_paths = sorted((save_dir / test_image_dir).glob(
|
29 |
if image_paths:
|
30 |
image_path = image_paths[-1]
|
31 |
rel_path = image_path.relative_to(save_dir)
|
32 |
-
image_str = f
|
33 |
Test prompt: {test_prompt}
|
34 |
|
35 |
-
![{image_path.stem}]({rel_path})
|
36 |
|
37 |
-
model_card = f
|
38 |
license: creativeml-openrail-m
|
39 |
base_model: {base_model}
|
40 |
training_prompt: {training_prompt}
|
@@ -59,7 +56,7 @@ inference: false
|
|
59 |
## Related papers:
|
60 |
- [Tune-A-Video](https://arxiv.org/abs/2212.11565): One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation
|
61 |
- [Stable-Diffusion](https://arxiv.org/abs/2112.10752): High-Resolution Image Synthesis with Latent Diffusion Models
|
62 |
-
|
63 |
|
64 |
-
with open(save_dir /
|
65 |
f.write(model_card)
|
|
|
5 |
|
6 |
def find_exp_dirs() -> list[str]:
|
7 |
repo_dir = pathlib.Path(__file__).parent
|
8 |
+
exp_root_dir = repo_dir / "experiments"
|
9 |
if not exp_root_dir.exists():
|
10 |
return []
|
11 |
+
exp_dirs = sorted(exp_root_dir.glob("*"))
|
12 |
+
exp_dirs = [exp_dir for exp_dir in exp_dirs if (exp_dir / "model_index.json").exists()]
|
|
|
|
|
|
|
13 |
return [path.relative_to(repo_dir).as_posix() for path in exp_dirs]
|
14 |
|
15 |
|
|
|
17 |
save_dir: pathlib.Path,
|
18 |
base_model: str,
|
19 |
training_prompt: str,
|
20 |
+
test_prompt: str = "",
|
21 |
+
test_image_dir: str = "",
|
22 |
) -> None:
|
23 |
+
image_str = ""
|
24 |
if test_prompt and test_image_dir:
|
25 |
+
image_paths = sorted((save_dir / test_image_dir).glob("*.gif"))
|
26 |
if image_paths:
|
27 |
image_path = image_paths[-1]
|
28 |
rel_path = image_path.relative_to(save_dir)
|
29 |
+
image_str = f"""## Samples
|
30 |
Test prompt: {test_prompt}
|
31 |
|
32 |
+
![{image_path.stem}]({rel_path})"""
|
33 |
|
34 |
+
model_card = f"""---
|
35 |
license: creativeml-openrail-m
|
36 |
base_model: {base_model}
|
37 |
training_prompt: {training_prompt}
|
|
|
56 |
## Related papers:
|
57 |
- [Tune-A-Video](https://arxiv.org/abs/2212.11565): One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation
|
58 |
- [Stable-Diffusion](https://arxiv.org/abs/2112.10752): High-Resolution Image Synthesis with Latent Diffusion Models
|
59 |
+
"""
|
60 |
|
61 |
+
with open(save_dir / "README.md", "w") as f:
|
62 |
f.write(model_card)
|