Transcrib3D-Demo / _appyibu.py
Vincent-Tann
Add 5 types of scene. Use [git lfs] to track glb and ply.
a780b40
raw
history blame
5.23 kB
import os
import threading
import gradio as gr
from transcrib3d_main import gen_prompt, get_gpt_response, get_openai_config, extract_answer_id_from_last_line
from code_interpreter import CodeInterpreter
from display_model import *
scan_id = "scene0132_00"
ply_file = os.path.join("scenes", f"{scan_id}_vh_clean_2_aligned.ply")
glb_file = os.path.join("scenes", f"{scan_id}_vh_clean_2_aligned.glb")
new_ply_file = os.path.join("scenes", f"{scan_id}_vh_clean_2_aligned_AddBox.ply")
new_glb_file = os.path.join("scenes", f"{scan_id}_vh_clean_2_aligned_AddBox.glb")
objects_info_file = os.path.join("objects_info", f"objects_info_{scan_id}.npy")
def insert_user_none_between_assistant(messages):
# 初始化结果列表
result = []
# 初始状态设置为"user",以确保列表第一个条目为"assistant"时能正确插入
last_role = "user"
for msg in messages:
# 检查当前信息的角色
current_role = msg["role"]
# 如果上一个和当前信息均为"assistant",插入content为None的"user"信息
if last_role == "assistant" and current_role == "assistant":
result.append({"role": "user", "content": None})
# 将当前信息添加到结果列表
result.append(msg)
# 更新上一条信息的角色
last_role = current_role
return result
def generate_answer_glb(answer_content):
last_line = answer_content.splitlines()[-1] if len(answer_content) > 0 else ''
answer_id, _ = extract_answer_id_from_last_line(last_line)
print("extracted answer id:", answer_id)
# get the bounding box of the answer object
box = np.load(objects_info_file, allow_pickle=True)[answer_id]['extension']
print("box extension:",box)
# add the box to ply
add_1box_to_ply(box, ply_file, new_ply_file)
ply_to_glb(new_ply_file, new_glb_file)
def run_inferring(instruction, model3d, dialogue):
# generate prompt from user instruction
# scan_id = "scene0132_00"
prompt = gen_prompt(instruction, scan_id)
# get oepnai config
openai_config = get_openai_config()
# get LLM response
code_interpreter = CodeInterpreter(**openai_config)
get_gpt_response(prompt, code_interpreter)
messages = code_interpreter.pretext
# draw the answer bounding box to the scene
generate_answer_glb(messages[-1]['content'])
# global model3d
# print(model3d.value)
# model3d.postprocess(new_glb_file)
# print(model3d.value)
# form gradio chat history
messages = insert_user_none_between_assistant(messages[1:])
# print(len(messages))
# print(messages)
gradio_messages = []
for idx in range(int(len(messages)/2)):
gradio_message = [messages[idx*2]['content'], messages[idx*2+1]['content']]
gradio_messages.append(gradio_message)
# return new_glb_file, gradio_messages
model3d.update(value=new_glb_file)
dialogue.update(gradio_messages)
def process_instruction_callback(user_instruction, model3d, dialogue):
threading.Thread(target=run_inferring, args=(user_instruction, model3d, dialogue)).start()
# return "Processing your instruction, please wait...",
with gr.Blocks() as demo:
gr.Markdown("## Transcrib3D-Demo")
with gr.Row():
model3d = gr.Model3D(
value="scenes/scene0132_00_vh_clean_2_aligned.glb",
# value="scenes/scene0132_00_vh_clean_2_aligned_AddBox.glb",
# value="scenes/scene0132_00_vh_clean_2_aligned.ply",
# value="scenes/scene0132_00_vh_clean_2_aligned.obj",
# value="scenes/scene0132_00_gt_bboxes_aligned.ply",
# value="scenes/cube.ply",
label="ScanNet-scene0132_00",
camera_position=(90,120,8),
zoom_speed=0.25,
height=635
)
# print("Type1:",type(model3d))
with gr.Column():
# with gr.Row():
user_instruction_textbox = gr.Textbox(
label="Instruction",
placeholder="Describe an object in the scene with its attributes and its relation with other objects.",
# scale=4
)
bt = gr.Button(
value="Submit",
# scale=1
)
dialogue = gr.Chatbot(
height=470
# value = [["1","2"], [None, '3']]
)
# print("Type2:",type(model3d))
# 直接在 inputs列表里写model3d,会导致实际传给callback函数的是str
# bt.click(fn=process_instruction_callback, inputs=user_instruction_textbox, outputs=dialogue)
bt.click(fn=process_instruction_callback, inputs=[user_instruction_textbox, gr.State(model3d), gr.State(dialogue)])#, outputs=[model3d,dialogue])
# 直接用lambda函数定义一个映射
# type(user_instruction_textbox.value)
# user_instruction_textbox.
# user_instruction_textbox.submit(fn=lambda: process_instruction_callback(user_instruction_textbox, model3d), inputs=[], outputs=dialogue)
# user_instruction_textbox.
# bt.click(fn=lambda: process_instruction_callback(user_instruction_textbox, model3d), inputs=[], outputs=dialogue)
demo.launch()