Spaces:
Running
Running
""" | |
SmolLM3 Dataset Handler | |
Handles data loading, preprocessing, and tokenization for SmolLM3 fine-tuning | |
""" | |
import os | |
import json | |
import torch | |
from typing import Dict, List, Optional, Union | |
from datasets import Dataset, load_dataset | |
from transformers import PreTrainedTokenizer | |
import logging | |
logger = logging.getLogger(__name__) | |
class SmolLM3Dataset: | |
"""Dataset handler for SmolLM3 fine-tuning""" | |
def __init__( | |
self, | |
data_path: str, | |
tokenizer: PreTrainedTokenizer, | |
max_seq_length: int = 4096, | |
use_chat_template: bool = True, | |
chat_template_kwargs: Optional[Dict] = None, | |
filter_bad_entries: bool = False, | |
bad_entry_field: str = "bad_entry", | |
sample_size: Optional[int] = None, | |
sample_seed: int = 42 | |
): | |
self.data_path = data_path | |
self.tokenizer = tokenizer | |
self.max_seq_length = max_seq_length | |
self.use_chat_template = use_chat_template | |
self.chat_template_kwargs = chat_template_kwargs or {} | |
self.filter_bad_entries = filter_bad_entries | |
self.bad_entry_field = bad_entry_field | |
self.sample_size = sample_size | |
self.sample_seed = sample_seed | |
# Load and process dataset | |
self.dataset = self._load_dataset() | |
self.processed_dataset = self._process_dataset() | |
def _load_dataset(self) -> Dataset: | |
"""Load dataset from various formats""" | |
logger.info("Loading dataset from %s", self.data_path) | |
# Check if it's a Hugging Face dataset | |
if os.path.isdir(self.data_path): | |
# Local directory | |
try: | |
dataset = load_dataset("json", data_files={ | |
"train": os.path.join(self.data_path, "train.json"), | |
"validation": os.path.join(self.data_path, "validation.json") if os.path.exists(os.path.join(self.data_path, "validation.json")) else None, | |
"test": os.path.join(self.data_path, "test.json") if os.path.exists(os.path.join(self.data_path, "test.json")) else None | |
}) | |
logger.info("Loaded dataset from local JSON files") | |
return dataset | |
except Exception as e: | |
logger.warning("Failed to load as JSON dataset: %s", e) | |
# Try to load as a single JSON file | |
if os.path.isfile(self.data_path) and self.data_path.endswith('.json'): | |
try: | |
with open(self.data_path, 'r', encoding='utf-8') as f: | |
data = json.load(f) | |
# Convert to dataset format | |
if isinstance(data, list): | |
dataset = Dataset.from_list(data) | |
else: | |
dataset = Dataset.from_dict(data) | |
logger.info("Loaded dataset from single JSON file") | |
return dataset | |
except Exception as e: | |
logger.error("Failed to load JSON file: %s", e) | |
raise | |
# Try to load as a Hugging Face dataset name | |
try: | |
dataset = load_dataset(self.data_path) | |
logger.info("Loaded Hugging Face dataset: %s", self.data_path) | |
# Filter bad entries if requested | |
if self.filter_bad_entries and self.bad_entry_field in dataset["train"].column_names: | |
logger.info("Filtering out bad entries using field: %s", self.bad_entry_field) | |
for split in dataset: | |
if self.bad_entry_field in dataset[split].column_names: | |
original_size = len(dataset[split]) | |
dataset[split] = dataset[split].filter(lambda x: not x[self.bad_entry_field]) | |
filtered_size = len(dataset[split]) | |
logger.info("Filtered %s: %d -> %d samples", split, original_size, filtered_size) | |
# Apply sampling if requested | |
if self.sample_size is not None and "train" in dataset: | |
logger.info(f"Sampling {self.sample_size} random samples from {len(dataset['train'])} total samples") | |
import random | |
random.seed(self.sample_seed) | |
# Sample indices | |
total_samples = len(dataset["train"]) | |
if self.sample_size > total_samples: | |
logger.warning(f"Requested sample size ({self.sample_size}) is larger than dataset size ({total_samples}). Using all samples.") | |
sampled_indices = list(range(total_samples)) | |
else: | |
sampled_indices = random.sample(range(total_samples), self.sample_size) | |
# Apply sampling to train split | |
dataset["train"] = dataset["train"].select(sampled_indices) | |
logger.info(f"Sampled {len(dataset['train'])} train samples") | |
# Also sample validation if it exists and is large | |
if "validation" in dataset and len(dataset["validation"]) > 1000: | |
val_sample_size = min(1000, len(dataset["validation"])) | |
logger.info(f"Sampling {val_sample_size} validation samples from {len(dataset['validation'])} total") | |
val_sampled_indices = random.sample(range(len(dataset["validation"])), val_sample_size) | |
dataset["validation"] = dataset["validation"].select(val_sampled_indices) | |
logger.info(f"Sampled {len(dataset['validation'])} validation samples") | |
# If only 'train' split exists, create validation and test splits | |
if ("train" in dataset) and ("validation" not in dataset or "test" not in dataset): | |
logger.info("Automatically splitting train into train/validation/test (98/1/1)") | |
split_dataset = dataset["train"].train_test_split(test_size=0.02, seed=42) | |
# Now split test into validation and test (1% each) | |
val_test_split = split_dataset["test"].train_test_split(test_size=0.5, seed=42) | |
dataset = { | |
"train": split_dataset["train"], | |
"validation": val_test_split["train"], | |
"test": val_test_split["test"] | |
} | |
return dataset | |
except Exception as e: | |
logger.error("Failed to load dataset: %s", e) | |
raise | |
def _process_dataset(self) -> Dataset: | |
"""Process the dataset for training""" | |
logger.info("Processing dataset for training") | |
def format_chat_template(example): | |
"""Format example using chat template""" | |
if self.use_chat_template: | |
try: | |
# Handle different input formats | |
if "messages" in example: | |
messages = example["messages"] | |
elif "conversations" in example: | |
messages = example["conversations"] | |
elif "user" in example and "assistant" in example: | |
messages = [ | |
{"role": "user", "content": example["user"]}, | |
{"role": "assistant", "content": example["assistant"]} | |
] | |
elif "instruction" in example and "output" in example: | |
messages = [ | |
{"role": "user", "content": example["instruction"]}, | |
{"role": "assistant", "content": example["output"]} | |
] | |
elif "prompt" in example and "completion" in example: | |
messages = [ | |
{"role": "user", "content": example["prompt"]}, | |
{"role": "assistant", "content": example["completion"]} | |
] | |
elif "prompt" in example and "accepted_completion" in example: | |
messages = [ | |
{"role": "user", "content": example["prompt"]}, | |
{"role": "assistant", "content": example["accepted_completion"]} | |
] | |
elif "prompt" in example and "completion" in example: | |
messages = [ | |
{"role": "user", "content": example["prompt"]}, | |
{"role": "assistant", "content": example["completion"]} | |
] | |
else: | |
# Fallback: treat as plain text | |
return {"text": str(example)} | |
# Add system message with /no_think tag if not present | |
if messages and messages[0]["role"] != "system": | |
# Check if we should add /no_think tag based on configuration | |
system_content = "Tu es TonicIA, un assistant francophone rigoureux et bienveillant." | |
if hasattr(self, 'chat_template_kwargs') and self.chat_template_kwargs: | |
# If no_think_system_message is True, add /no_think tag | |
if self.chat_template_kwargs.get("no_think_system_message") == True: | |
system_content = "Tu es TonicIA , un assistant francophone rigoureux et bienveillant. /no_think" | |
messages.insert(0, {"role": "system", "content": system_content}) | |
# Apply chat template | |
text = self.tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=self.chat_template_kwargs.get("add_generation_prompt", True) | |
) | |
return {"text": text} | |
except Exception as e: | |
logger.warning("Failed to apply chat template: %s", e) | |
# Fallback to plain text | |
return {"text": str(example)} | |
else: | |
# Use plain text | |
if "text" in example: | |
return {"text": example["text"]} | |
else: | |
return {"text": str(example)} | |
def tokenize_function(examples): | |
"""Tokenize the examples""" | |
# Tokenize the texts with fixed length | |
tokenized = self.tokenizer( | |
examples["text"], | |
truncation=True, | |
padding=True, # Enable padding during tokenization | |
max_length=self.max_seq_length, | |
return_overflowing_tokens=False, # Don't return overflowing tokens | |
return_length=True, | |
) | |
# Calculate input length | |
input_length = [len(x) for x in tokenized["input_ids"]] | |
# Create labels (same as input_ids for causal LM) | |
tokenized["labels"] = tokenized["input_ids"].copy() | |
return { | |
"input_ids": tokenized["input_ids"], | |
"attention_mask": tokenized["attention_mask"], | |
"labels": tokenized["labels"], | |
"length": input_length, | |
} | |
# Process the dataset - handle both single dataset and dictionary of splits | |
if isinstance(self.dataset, dict): | |
# Process each split individually | |
processed_dataset = {} | |
for split_name, split_dataset in self.dataset.items(): | |
logger.info("Processing %s split...", split_name) | |
# Format the split | |
processed_split = split_dataset.map( | |
format_chat_template, | |
remove_columns=split_dataset.column_names, | |
desc="Formatting {} dataset".format(split_name) | |
) | |
# Tokenize the split | |
tokenized_split = processed_split.map( | |
tokenize_function, | |
remove_columns=processed_split.column_names, | |
desc="Tokenizing {} dataset".format(split_name), | |
batched=True, | |
) | |
processed_dataset[split_name] = tokenized_split | |
else: | |
# Single dataset | |
processed_dataset = self.dataset.map( | |
format_chat_template, | |
remove_columns=self.dataset.column_names, | |
desc="Formatting dataset" | |
) | |
# Tokenize the dataset | |
processed_dataset = processed_dataset.map( | |
tokenize_function, | |
remove_columns=processed_dataset.column_names, | |
desc="Tokenizing dataset", | |
batched=True, | |
) | |
# Log processing results | |
if isinstance(processed_dataset, dict): | |
logger.info("Dataset processed. Train samples: %d", len(processed_dataset['train'])) | |
if "validation" in processed_dataset: | |
logger.info("Validation samples: %d", len(processed_dataset['validation'])) | |
if "test" in processed_dataset: | |
logger.info("Test samples: %d", len(processed_dataset['test'])) | |
else: | |
logger.info("Dataset processed. Samples: %d", len(processed_dataset)) | |
return processed_dataset | |
def get_train_dataset(self) -> Dataset: | |
"""Get training dataset""" | |
return self.processed_dataset["train"] | |
def get_eval_dataset(self) -> Optional[Dataset]: | |
"""Get evaluation dataset if available""" | |
if "validation" in self.processed_dataset: | |
return self.processed_dataset["validation"] | |
elif "test" in self.processed_dataset: | |
return self.processed_dataset["test"] | |
else: | |
return None | |
def get_data_collator(self): | |
"""Get data collator for training""" | |
from transformers import DataCollatorForLanguageModeling | |
import torch | |
base_collator = DataCollatorForLanguageModeling( | |
tokenizer=self.tokenizer, | |
mlm=False, | |
pad_to_multiple_of=8, | |
return_tensors="pt", | |
) | |
def collator_with_stats(features): | |
batch = base_collator(features) | |
# Calculate token stats | |
input_ids = batch["input_ids"] | |
attention_mask = batch.get("attention_mask", None) | |
labels = batch.get("labels", None) | |
pad_token_id = self.tokenizer.pad_token_id | |
if pad_token_id is None: | |
pad_token_id = self.tokenizer.eos_token_id | |
total_tokens = int((input_ids != pad_token_id).sum().item()) | |
padding_tokens = int((input_ids == pad_token_id).sum().item()) | |
batch_size, seq_len = input_ids.shape | |
# Truncated tokens: count tokens that were cut off due to max_seq_length | |
# (Assume all input is truncated to max_seq_length, so count tokens at max length) | |
truncated_tokens = 0 | |
for f in features: | |
if "length" in f and f["length"] >= self.max_seq_length: | |
truncated_tokens += f["length"] - self.max_seq_length + 1 | |
batch["total_tokens"] = total_tokens | |
batch["padding_tokens"] = padding_tokens | |
batch["truncated_tokens"] = truncated_tokens | |
batch["batch_size"] = batch_size | |
batch["seq_len"] = seq_len | |
return batch | |
return collator_with_stats | |
def create_sample_dataset(output_path: str = "my_dataset"): | |
"""Create a sample dataset for testing""" | |
os.makedirs(output_path, exist_ok=True) | |
# Sample conversations | |
conversations = [ | |
{ | |
"messages": [ | |
{"role": "user", "content": "What is machine learning?"}, | |
{"role": "assistant", "content": "Machine learning is a subset of artificial intelligence that enables computers to learn and improve from experience without being explicitly programmed."} | |
] | |
}, | |
{ | |
"messages": [ | |
{"role": "user", "content": "Explain gravity in simple terms."}, | |
{"role": "assistant", "content": "Gravity is the force that pulls objects toward each other, like how the Earth pulls things down to the ground."} | |
] | |
}, | |
{ | |
"messages": [ | |
{"role": "user", "content": "How do I make a cup of coffee?"}, | |
{"role": "assistant", "content": "To make a cup of coffee: 1) Boil water, 2) Add coffee grounds to a filter, 3) Pour hot water over the grounds, 4) Let it brew for a few minutes, 5) Enjoy!"} | |
] | |
} | |
] | |
# Split into train/validation | |
train_data = conversations[:2] | |
validation_data = conversations[2:] | |
# Save to files | |
with open(os.path.join(output_path, "train.json"), 'w', encoding='utf-8') as f: | |
json.dump(train_data, f, indent=2, ensure_ascii=False) | |
with open(os.path.join(output_path, "validation.json"), 'w', encoding='utf-8') as f: | |
json.dump(validation_data, f, indent=2, ensure_ascii=False) | |
logger.info("Sample dataset created in %s", output_path) | |
return output_path |