SmolFactory / scripts /model_tonic /push_to_huggingface.py
Tonic's picture
adds repoid only based on repo name, adds version-robust sfttrainer
665844a
#!/usr/bin/env python3
"""
Push Trained Model and Results to Hugging Face Hub
Integrates with Trackio monitoring and HF Datasets for complete model deployment
"""
import os
import json
import argparse
import logging
import time
from pathlib import Path
from typing import Dict, Any, Optional, List
from datetime import datetime
import subprocess
import shutil
import platform
# Set timeout for HF operations to prevent hanging
os.environ['HF_HUB_DOWNLOAD_TIMEOUT'] = '300'
os.environ['HF_HUB_UPLOAD_TIMEOUT'] = '600'
try:
from huggingface_hub import HfApi, create_repo, upload_file
from huggingface_hub import snapshot_download, hf_hub_download
HF_AVAILABLE = True
except ImportError:
HF_AVAILABLE = False
print("Warning: huggingface_hub not available. Install with: pip install huggingface_hub")
try:
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..', 'src'))
from monitoring import SmolLM3Monitor
MONITORING_AVAILABLE = True
except ImportError:
MONITORING_AVAILABLE = False
print("Warning: monitoring module not available")
logger = logging.getLogger(__name__)
class TimeoutError(Exception):
"""Custom timeout exception"""
pass
def timeout_handler(signum, frame):
"""Signal handler for timeout"""
raise TimeoutError("Operation timed out")
class HuggingFacePusher:
"""Push trained models and results to Hugging Face Hub with HF Datasets integration"""
def __init__(
self,
model_path: str,
repo_name: str,
token: Optional[str] = None,
private: bool = False,
trackio_url: Optional[str] = None,
experiment_name: Optional[str] = None,
dataset_repo: Optional[str] = None,
hf_token: Optional[str] = None,
author_name: Optional[str] = None,
model_description: Optional[str] = None,
training_config_type: Optional[str] = None,
model_name: Optional[str] = None,
dataset_name: Optional[str] = None,
batch_size: Optional[str] = None,
learning_rate: Optional[str] = None,
max_epochs: Optional[str] = None,
max_seq_length: Optional[str] = None,
trainer_type: Optional[str] = None
):
self.model_path = Path(model_path)
# Original user input (may be just the repo name without username)
self.repo_name = repo_name
self.token = token or hf_token or os.getenv('HF_TOKEN')
self.private = private
self.trackio_url = trackio_url
self.experiment_name = experiment_name
self.author_name = author_name
self.model_description = model_description
# Training configuration details for model card generation
self.training_config_type = training_config_type
self.model_name = model_name
self.dataset_name = dataset_name
self.batch_size = batch_size
self.learning_rate = learning_rate
self.max_epochs = max_epochs
self.max_seq_length = max_seq_length
self.trainer_type = trainer_type
# HF Datasets configuration
self.dataset_repo = dataset_repo or os.getenv('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments')
self.hf_token = hf_token or os.getenv('HF_TOKEN')
# Initialize HF API
if HF_AVAILABLE:
self.api = HfApi(token=self.token)
else:
raise ImportError("huggingface_hub is required. Install with: pip install huggingface_hub")
# Resolve the full repo id (username/repo) if user only provided repo name
self.repo_id = self._resolve_repo_id(self.repo_name)
# Initialize monitoring if available
self.monitor = None
if MONITORING_AVAILABLE:
self.monitor = SmolLM3Monitor(
experiment_name=experiment_name or "model_push",
trackio_url=trackio_url,
enable_tracking=bool(trackio_url),
hf_token=self.hf_token,
dataset_repo=self.dataset_repo
)
logger.info(f"Initialized HuggingFacePusher for {self.repo_id}")
logger.info(f"Dataset repository: {self.dataset_repo}")
def _resolve_repo_id(self, repo_name: str) -> str:
"""Return a fully-qualified repo id in the form username/repo.
If the provided name already contains a '/', it is returned unchanged.
Otherwise, we attempt to derive the username from the authenticated token
or from the HF_USERNAME environment variable.
"""
try:
if "/" in repo_name:
return repo_name
# Need a username. Prefer API whoami(), fallback to env HF_USERNAME
username: Optional[str] = None
if self.token:
try:
user_info = self.api.whoami()
username = user_info.get("name") or user_info.get("username")
except Exception:
username = None
if not username:
username = os.getenv("HF_USERNAME")
if not username:
raise ValueError(
"Username could not be determined. Provide a token or set HF_USERNAME, "
"or pass a fully-qualified repo id 'username/repo'."
)
return f"{username}/{repo_name}"
except Exception as resolve_error:
logger.error(f"Failed to resolve full repo id for '{repo_name}': {resolve_error}")
# Fall back to provided value (may fail later at create/upload)
return repo_name
def create_repository(self) -> bool:
"""Create the Hugging Face repository"""
try:
logger.info(f"Creating repository: {self.repo_id}")
# Create repository with timeout handling
try:
# Create repository
create_repo(
repo_id=self.repo_id,
token=self.token,
private=self.private,
exist_ok=True
)
logger.info(f"βœ… Repository created: https://huggingface.co/{self.repo_id}")
return True
except Exception as e:
logger.error(f"❌ Repository creation failed: {e}")
return False
except Exception as e:
logger.error(f"❌ Failed to create repository: {e}")
return False
def validate_model_path(self) -> bool:
"""Validate that the model path contains required files"""
# Support both safetensors and pytorch formats
required_files = [
"config.json",
"tokenizer.json",
"tokenizer_config.json"
]
# Check for model files (either safetensors or pytorch)
model_files = [
"model.safetensors.index.json", # Safetensors format
"pytorch_model.bin" # PyTorch format
]
missing_files = []
for file in required_files:
if not (self.model_path / file).exists():
missing_files.append(file)
# Check if at least one model file exists
model_file_exists = any((self.model_path / file).exists() for file in model_files)
if not model_file_exists:
missing_files.extend(model_files)
if missing_files:
logger.error(f"❌ Missing required files: {missing_files}")
return False
logger.info("βœ… Model files validated")
return True
def create_model_card(self, training_config: Dict[str, Any], results: Dict[str, Any]) -> str:
"""Create a comprehensive model card using the generate_model_card.py script"""
try:
# Import the model card generator
import sys
sys.path.append(os.path.join(os.path.dirname(__file__)))
from generate_model_card import ModelCardGenerator, create_default_variables
# Create generator
generator = ModelCardGenerator()
# Create variables for the model card
variables = create_default_variables()
# Update with actual values
variables.update({
"repo_name": self.repo_id,
"model_name": self.repo_id.split('/')[-1],
"experiment_name": self.experiment_name or "model_push",
"dataset_repo": self.dataset_repo,
"author_name": self.author_name or "Model Author",
"model_description": self.model_description or "A fine-tuned version of SmolLM3-3B for improved text generation capabilities.",
"training_config_type": self.training_config_type or "Custom Configuration",
"base_model": self.model_name or "HuggingFaceTB/SmolLM3-3B",
"dataset_name": self.dataset_name or "Custom Dataset",
"trainer_type": self.trainer_type or "SFTTrainer",
"batch_size": str(self.batch_size) if self.batch_size else "8",
"learning_rate": str(self.learning_rate) if self.learning_rate else "5e-6",
"max_epochs": str(self.max_epochs) if self.max_epochs else "3",
"max_seq_length": str(self.max_seq_length) if self.max_seq_length else "2048",
"hardware_info": self._get_hardware_info(),
"trackio_url": self.trackio_url or "N/A",
"training_loss": str(results.get('train_loss', 'N/A')),
"validation_loss": str(results.get('eval_loss', 'N/A')),
"perplexity": str(results.get('perplexity', 'N/A')),
"quantized_models": False # Set to True if quantized models are available
})
# Generate the model card
model_card_content = generator.generate_model_card(variables)
logger.info("βœ… Model card generated using generate_model_card.py")
return model_card_content
except Exception as e:
logger.error(f"❌ Failed to generate model card with generator: {e}")
logger.info("πŸ”„ Falling back to simple model card")
return self._create_simple_model_card(training_config, results)
def _create_simple_model_card(self, training_config: Dict[str, Any], results: Dict[str, Any]) -> str:
"""Create a simple model card without complex YAML to avoid formatting issues"""
return f"""---
language:
- en
- fr
license: apache-2.0
tags:
- smollm3
- fine-tuned
- causal-lm
- text-generation
pipeline_tag: text-generation
base_model: HuggingFaceTB/SmolLM3-3B
---
# {self.repo_id.split('/')[-1]}
This is a fine-tuned SmolLM3 model based on the HuggingFaceTB/SmolLM3-3B architecture.
## Model Details
- **Base Model**: HuggingFaceTB/SmolLM3-3B
- **Fine-tuning Method**: Supervised Fine-tuning
- **Training Date**: {datetime.now().strftime('%Y-%m-%d')}
- **Model Size**: {self._get_model_size():.1f} GB
- **Dataset Repository**: {self.dataset_repo}
- **Hardware**: {self._get_hardware_info()}
## Training Configuration
```json
{json.dumps(training_config, indent=2)}
```
## Training Results
```json
{json.dumps(results, indent=2)}
```
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("{self.repo_id}")
tokenizer = AutoTokenizer.from_pretrained("{self.repo_id}")
# Generate text
inputs = tokenizer("Hello, how are you?", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Information
- **Base Model**: HuggingFaceTB/SmolLM3-3B
- **Hardware**: {self._get_hardware_info()}
- **Training Time**: {results.get('training_time_hours', 'Unknown')} hours
- **Final Loss**: {results.get('final_loss', 'Unknown')}
- **Final Accuracy**: {results.get('final_accuracy', 'Unknown')}
- **Dataset Repository**: {self.dataset_repo}
## Model Performance
- **Training Loss**: {results.get('train_loss', 'Unknown')}
- **Validation Loss**: {results.get('eval_loss', 'Unknown')}
- **Training Steps**: {results.get('total_steps', 'Unknown')}
## Experiment Tracking
This model was trained with experiment tracking enabled. Training metrics and configuration are stored in the HF Dataset repository: `{self.dataset_repo}`
## Limitations and Biases
This model is fine-tuned for specific tasks and may not generalize well to all use cases. Please evaluate the model's performance on your specific task before deployment.
## License
This model is licensed under the Apache 2.0 License.
"""
def _get_model_size(self) -> float:
"""Get model size in GB"""
try:
total_size = 0
for file in self.model_path.rglob("*"):
if file.is_file():
total_size += file.stat().st_size
return total_size / (1024**3) # Convert to GB
except:
return 0.0
def _get_hardware_info(self) -> str:
"""Get hardware information"""
try:
import torch
if torch.cuda.is_available():
gpu_name = torch.cuda.get_device_name(0)
return f"GPU: {gpu_name}"
else:
return "CPU"
except:
return "Unknown"
def upload_model_files(self) -> bool:
"""Upload model files to Hugging Face Hub with timeout protection"""
try:
logger.info("Uploading model files...")
# Upload all files in the model directory
for file_path in self.model_path.rglob("*"):
if file_path.is_file():
relative_path = file_path.relative_to(self.model_path)
remote_path = str(relative_path)
logger.info(f"Uploading {relative_path}")
try:
upload_file(
path_or_fileobj=str(file_path),
path_in_repo=remote_path,
repo_id=self.repo_id,
token=self.token
)
logger.info(f"βœ… Uploaded {relative_path}")
except Exception as e:
logger.error(f"❌ Failed to upload {relative_path}: {e}")
return False
logger.info("βœ… Model files uploaded successfully")
return True
except Exception as e:
logger.error(f"❌ Failed to upload model files: {e}")
return False
def upload_training_results(self, results_path: str) -> bool:
"""Upload training results and logs"""
try:
logger.info("Uploading training results...")
results_files = [
"train_results.json",
"eval_results.json",
"training_config.json",
"training.log"
]
for file_name in results_files:
file_path = Path(results_path) / file_name
if file_path.exists():
logger.info(f"Uploading {file_name}")
upload_file(
path_or_fileobj=str(file_path),
path_in_repo=f"training_results/{file_name}",
repo_id=self.repo_id,
token=self.token
)
logger.info("βœ… Training results uploaded successfully")
return True
except Exception as e:
logger.error(f"❌ Failed to upload training results: {e}")
return False
def create_readme(self, training_config: Dict[str, Any], results: Dict[str, Any]) -> bool:
"""Create and upload README.md"""
try:
logger.info("Creating README.md...")
readme_content = f"""# {self.repo_id.split('/')[-1]}
A fine-tuned SmolLM3 model for text generation tasks.
## Quick Start
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("{self.repo_id}")
tokenizer = AutoTokenizer.from_pretrained("{self.repo_id}")
# Generate text
text = "Hello, how are you?"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Model Information
- **Base Model**: HuggingFaceTB/SmolLM3-3B
- **Fine-tuning Date**: {datetime.now().strftime('%Y-%m-%d')}
- **Model Size**: {self._get_model_size():.1f} GB
- **Training Steps**: {results.get('total_steps', 'Unknown')}
- **Final Loss**: {results.get('final_loss', 'Unknown')}
- **Dataset Repository**: {self.dataset_repo}
## Training Configuration
```json
{json.dumps(training_config, indent=2)}
```
## Performance Metrics
```json
{json.dumps(results, indent=2)}
```
## Experiment Tracking
Training metrics and configuration are stored in the HF Dataset repository: `{self.dataset_repo}`
## Files
- `model.safetensors.index.json`: Model weights (safetensors format)
- `config.json`: Model configuration
- `tokenizer.json`: Tokenizer configuration
- `training_results/`: Training logs and results
## License
MIT License
"""
# Write README to temporary file
readme_path = Path("temp_readme.md")
with open(readme_path, "w") as f:
f.write(readme_content)
# Upload README
upload_file(
path_or_fileobj=str(readme_path),
path_in_repo="README.md",
token=self.token,
repo_id=self.repo_id
)
# Clean up
readme_path.unlink()
logger.info("βœ… README.md uploaded successfully")
return True
except Exception as e:
logger.error(f"❌ Failed to create README: {e}")
return False
def log_to_trackio(self, action: str, details: Dict[str, Any]):
"""Log push action to Trackio and HF Datasets"""
if self.monitor:
try:
# Log to Trackio
self.monitor.log_metrics({
"push_action": action,
"repo_name": self.repo_id,
"model_size_gb": self._get_model_size(),
"dataset_repo": self.dataset_repo,
**details
})
# Log training summary
self.monitor.log_training_summary({
"model_push": True,
"model_repo": self.repo_id,
"dataset_repo": self.dataset_repo,
"push_date": datetime.now().isoformat(),
**details
})
logger.info(f"βœ… Logged {action} to Trackio and HF Datasets")
except Exception as e:
logger.error(f"❌ Failed to log to Trackio: {e}")
def push_model(self, training_config: Optional[Dict[str, Any]] = None,
results: Optional[Dict[str, Any]] = None) -> bool:
"""Complete model push process with HF Datasets integration"""
logger.info(f"πŸš€ Starting model push to {self.repo_id}")
logger.info(f"πŸ“Š Dataset repository: {self.dataset_repo}")
# Validate model path
if not self.validate_model_path():
return False
# Create repository
if not self.create_repository():
return False
# Load training config and results if not provided
if training_config is None:
training_config = self._load_training_config()
if results is None:
results = self._load_training_results()
# Create and upload model card
model_card = self.create_model_card(training_config, results)
model_card_path = Path("temp_model_card.md")
with open(model_card_path, "w") as f:
f.write(model_card)
try:
upload_file(
path_or_fileobj=str(model_card_path),
path_in_repo="README.md",
repo_id=self.repo_id,
token=self.token
)
finally:
model_card_path.unlink()
# Upload model files
if not self.upload_model_files():
return False
# Upload training results
if results:
self.upload_training_results(str(self.model_path))
# Log to Trackio and HF Datasets
self.log_to_trackio("model_push", {
"model_path": str(self.model_path),
"repo_name": self.repo_name,
"private": self.private,
"training_config": training_config,
"results": results
})
logger.info(f"πŸŽ‰ Model successfully pushed to: https://huggingface.co/{self.repo_id}")
logger.info(f"πŸ“Š Experiment data stored in: {self.dataset_repo}")
return True
def _load_training_config(self) -> Dict[str, Any]:
"""Load training configuration"""
config_path = self.model_path / "training_config.json"
if config_path.exists():
with open(config_path, "r") as f:
return json.load(f)
return {"model_name": "HuggingFaceTB/SmolLM3-3B"}
def _load_training_results(self) -> Dict[str, Any]:
"""Load training results"""
results_path = self.model_path / "train_results.json"
if results_path.exists():
with open(results_path, "r") as f:
return json.load(f)
return {"final_loss": "Unknown", "total_steps": "Unknown"}
def parse_args():
"""Parse command line arguments"""
parser = argparse.ArgumentParser(description='Push trained model to Hugging Face Hub')
# Required arguments
parser.add_argument('model_path', type=str, help='Path to trained model directory')
parser.add_argument('repo_name', type=str, help='Hugging Face repository name (repo-name). Username will be auto-detected from your token.')
# Optional arguments
parser.add_argument('--token', type=str, default=None, help='Hugging Face token')
parser.add_argument('--hf-token', type=str, default=None, help='Hugging Face token (alternative to --token)')
parser.add_argument('--private', action='store_true', help='Make repository private')
parser.add_argument('--trackio-url', type=str, default=None, help='Trackio Space URL for logging')
parser.add_argument('--experiment-name', type=str, default=None, help='Experiment name for Trackio')
parser.add_argument('--dataset-repo', type=str, default=None, help='HF Dataset repository for experiment storage')
parser.add_argument('--author-name', type=str, default=None, help='Author name for model card')
parser.add_argument('--model-description', type=str, default=None, help='Model description for model card')
parser.add_argument('--training-config-type', type=str, default=None, help='Training configuration type')
parser.add_argument('--model-name', type=str, default=None, help='Base model name')
parser.add_argument('--dataset-name', type=str, default=None, help='Dataset name')
parser.add_argument('--batch-size', type=str, default=None, help='Batch size')
parser.add_argument('--learning-rate', type=str, default=None, help='Learning rate')
parser.add_argument('--max-epochs', type=str, default=None, help='Maximum epochs')
parser.add_argument('--max-seq-length', type=str, default=None, help='Maximum sequence length')
parser.add_argument('--trainer-type', type=str, default=None, help='Trainer type')
return parser.parse_args()
def main():
"""Main function"""
args = parse_args()
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger.info("Starting model push to Hugging Face Hub")
# Initialize pusher
try:
pusher = HuggingFacePusher(
model_path=args.model_path,
repo_name=args.repo_name,
token=args.token,
private=args.private,
trackio_url=args.trackio_url,
experiment_name=args.experiment_name,
dataset_repo=args.dataset_repo,
hf_token=args.hf_token,
author_name=args.author_name,
model_description=args.model_description,
training_config_type=args.training_config_type,
model_name=args.model_name,
dataset_name=args.dataset_name,
batch_size=args.batch_size,
learning_rate=args.learning_rate,
max_epochs=args.max_epochs,
max_seq_length=args.max_seq_length,
trainer_type=args.trainer_type
)
# Push model
success = pusher.push_model()
if success:
logger.info("βœ… Model push completed successfully!")
logger.info(f"🌐 View your model at: https://huggingface.co/{args.repo_name}")
if args.dataset_repo:
logger.info(f"πŸ“Š View experiment data at: https://huggingface.co/datasets/{args.dataset_repo}")
else:
logger.error("❌ Model push failed!")
return 1
except Exception as e:
logger.error(f"❌ Error during model push: {e}")
return 1
return 0
if __name__ == "__main__":
exit(main())