Spaces:
Running
Running
# Interactive SmolLM3 End-to-End Fine-tuning Pipeline | |
# This script creates a complete finetuning pipeline with user configuration | |
set -e # Exit on any error | |
# Colors for output | |
RED='\033[0;31m' | |
GREEN='\033[0;32m' | |
YELLOW='\033[1;33m' | |
BLUE='\033[0;34m' | |
PURPLE='\033[0;35m' | |
CYAN='\033[0;36m' | |
NC='\033[0m' # No Color | |
# Function to print colored output | |
print_status() { | |
echo -e "${GREEN}โ $1${NC}" | |
} | |
print_warning() { | |
echo -e "${YELLOW}โ ๏ธ $1${NC}" | |
} | |
print_error() { | |
echo -e "${RED}โ $1${NC}" | |
} | |
print_info() { | |
echo -e "${BLUE}โน๏ธ $1${NC}" | |
} | |
print_header() { | |
echo -e "${PURPLE}๐ $1${NC}" | |
} | |
print_step() { | |
echo -e "${CYAN}๐ $1${NC}" | |
} | |
# Function to get user input with default value | |
get_input() { | |
local prompt="$1" | |
local default="$2" | |
local var_name="$3" | |
if [ -n "$default" ]; then | |
read -p "$prompt [$default]: " input | |
if [ -z "$input" ]; then | |
input="$default" | |
fi | |
else | |
read -p "$prompt: " input | |
while [ -z "$input" ]; do | |
print_error "This field is required!" | |
read -p "$prompt: " input | |
done | |
fi | |
eval "$var_name=\"$input\"" | |
} | |
# Function to get secure token input (hidden with stars) | |
get_secure_token_input() { | |
local prompt="$1" | |
local var_name="$2" | |
local token_type="$3" | |
echo -n "$prompt: " | |
# Use -s flag to hide input, -r to not interpret backslashes | |
read -s -r input | |
echo # Add newline after hidden input | |
# Validate that input is not empty | |
while [ -z "$input" ]; do | |
print_error "Token is required!" | |
echo -n "$prompt: " | |
read -s -r input | |
echo | |
done | |
# Store the token | |
eval "$var_name=\"$input\"" | |
# Show confirmation with stars | |
local masked_token="${input:0:4}****${input: -4}" | |
print_status "$token_type token added: $masked_token" | |
} | |
# Function to select from options | |
select_option() { | |
local prompt="$1" | |
local options=("${@:2}") | |
local var_name="${!#}" | |
echo "$prompt" | |
for i in "${!options[@]}"; do | |
echo " $((i+1)). ${options[$i]}" | |
done | |
while true; do | |
read -p "Enter your choice (1-${#options[@]}): " choice | |
if [[ "$choice" =~ ^[0-9]+$ ]] && [ "$choice" -ge 1 ] && [ "$choice" -le "${#options[@]}" ]; then | |
eval "$var_name=\"${options[$((choice-1))]}\"" | |
break | |
else | |
print_error "Invalid choice. Please enter a number between 1 and ${#options[@]}" | |
fi | |
done | |
} | |
# Function to validate HF token and get username | |
validate_hf_token_and_get_username() { | |
local token="$1" | |
if [ -z "$token" ]; then | |
return 1 | |
fi | |
# Use Python script for validation | |
local result | |
if result=$(python3 scripts/validate_hf_token.py "$token" 2>/dev/null); then | |
# Parse JSON result using a more robust approach | |
local success=$(echo "$result" | python3 -c " | |
import sys, json | |
try: | |
data = json.load(sys.stdin) | |
print(data.get('success', False)) | |
except: | |
print('False') | |
") | |
local username=$(echo "$result" | python3 -c " | |
import sys, json | |
try: | |
data = json.load(sys.stdin) | |
print(data.get('username', '')) | |
except: | |
print('') | |
") | |
local error=$(echo "$result" | python3 -c " | |
import sys, json | |
try: | |
data = json.load(sys.stdin) | |
print(data.get('error', 'Unknown error')) | |
except: | |
print('Failed to parse response') | |
") | |
if [ "$success" = "True" ] && [ -n "$username" ]; then | |
HF_USERNAME="$username" | |
return 0 | |
else | |
print_error "Token validation failed: $error" | |
return 1 | |
fi | |
else | |
print_error "Failed to run token validation script. Make sure huggingface_hub is installed." | |
return 1 | |
fi | |
} | |
# Function to show training configurations (optionally filtered by family) | |
show_training_configs() { | |
local family="$1" # Optional: "SmolLM3" or "GPT-OSS" | |
echo "" | |
print_header "Available Training Configurations" | |
echo "======================================" | |
echo "" | |
if [ -z "$family" ] || [ "$family" = "SmolLM3" ]; then | |
echo "=== SmolLM3 Configurations ===" | |
echo "1. Basic Training (Default)" | |
echo " - Model: SmolLM3-3B" | |
echo " - Dataset: SmolTalk" | |
echo " - Epochs: 3" | |
echo " - Batch Size: 2" | |
echo " - Learning Rate: 5e-6" | |
echo "" | |
echo "2. H100 Lightweight (Rapid)" | |
echo " - Model: SmolLM3-3B" | |
echo " - Dataset: OpenHermes-FR (80K samples)" | |
echo " - Epochs: 1" | |
echo " - Batch Size: 16" | |
echo " - Learning Rate: 8e-6" | |
echo " - Sequence Length: 8192" | |
echo " - Optimized for H100 rapid training" | |
echo "" | |
echo "3. A100 Large Scale" | |
echo " - Model: SmolLM3-3B" | |
echo " - Dataset: OpenHermes-FR" | |
echo " - Epochs: 1.3 passes" | |
echo " - Batch Size: 8" | |
echo " - Learning Rate: 5e-6" | |
echo " - Sequence Length: 8192" | |
echo "" | |
echo "4. Multiple Passes" | |
echo " - Model: SmolLM3-3B" | |
echo " - Dataset: OpenHermes-FR" | |
echo " - Epochs: 4 passes" | |
echo " - Batch Size: 6" | |
echo " - Learning Rate: 3e-6" | |
echo " - Sequence Length: 8192" | |
echo "" | |
fi | |
if [ -z "$family" ] || [ "$family" = "GPT-OSS" ]; then | |
echo "=== GPT-OSS Configurations ===" | |
echo "1. GPT-OSS Basic Training" | |
echo " - Model: openai/gpt-oss-20b" | |
echo " - Dataset: Multilingual-Thinking" | |
echo " - Epochs: 1" | |
echo " - Batch Size: 4" | |
echo " - Learning Rate: 2e-4" | |
echo " - LoRA + MXFP4 Quantization" | |
echo " - Optimized for multilingual reasoning" | |
echo "" | |
echo "2. GPT-OSS H100 Optimized" | |
echo " - Model: openai/gpt-oss-20b" | |
echo " - Dataset: Multilingual-Thinking" | |
echo " - Epochs: 2" | |
echo " - Batch Size: 8" | |
echo " - Learning Rate: 3e-4" | |
echo " - Enhanced LoRA (rank 16)" | |
echo " - Optimized for H100 performance" | |
echo "" | |
echo "3. GPT-OSS Multilingual Reasoning" | |
echo " - Model: openai/gpt-oss-20b" | |
echo " - Dataset: Multilingual-Thinking" | |
echo " - Epochs: 1" | |
echo " - Batch Size: 4" | |
echo " - Learning Rate: 2e-4" | |
echo " - Specialized for reasoning tasks" | |
echo " - Supports 10+ languages" | |
echo "" | |
echo "4. GPT-OSS Memory Optimized" | |
echo " - Model: openai/gpt-oss-20b" | |
echo " - Dataset: Multilingual-Thinking" | |
echo " - Epochs: 1" | |
echo " - Batch Size: 1 (effective 16 with accumulation)" | |
echo " - Learning Rate: 2e-4" | |
echo " - 4-bit quantization + reduced LoRA" | |
echo " - Optimized for limited GPU memory" | |
echo "" | |
echo "5. GPT-OSS OpenHermes-FR (Recommended)" | |
echo " - Model: openai/gpt-oss-20b" | |
echo " - Dataset: legmlai/openhermes-fr (800K French examples)" | |
echo " - Epochs: 1.5" | |
echo " - Batch Size: 6 (effective 36 with accumulation)" | |
echo " - Learning Rate: 2.5e-4" | |
echo " - Optimized for French language training" | |
echo " - Quality filtering enabled" | |
echo "" | |
echo "6. GPT-OSS OpenHermes-FR Memory Optimized" | |
echo " - Model: openai/gpt-oss-20b" | |
echo " - Dataset: legmlai/openhermes-fr (200K samples)" | |
echo " - Epochs: 1" | |
echo " - Batch Size: 2 (effective 32 with accumulation)" | |
echo " - Learning Rate: 2e-4" | |
echo " - Native MXFP4 quantization" | |
echo " - Memory optimized for 40-80GB GPUs" | |
echo " - Harmony format compatible" | |
echo "" | |
echo "7. GPT-OSS Custom Dataset" | |
echo " - Model: openai/gpt-oss-20b" | |
echo " - Dataset: User-defined (fully customizable)" | |
echo " - Epochs: Configurable" | |
echo " - Batch Size: Configurable" | |
echo " - Learning Rate: Configurable" | |
echo " - Maximum flexibility with all parameters" | |
echo "" | |
echo "8. GPT-OSS Medical o1 SFT (Reasoning)" | |
echo " - Model: openai/gpt-oss-20b" | |
echo " - Dataset: FreedomIntelligence/medical-o1-reasoning-SFT" | |
echo " - Format: Question | Complex_CoT | Response" | |
echo " - Harmony formatting with optional system/developer messages" | |
echo "" | |
fi | |
} | |
# Function to get training configuration | |
get_training_config() { | |
local config_type="$1" | |
case "$config_type" in | |
"Basic Training") | |
MODEL_NAME="HuggingFaceTB/SmolLM3-3B" | |
DATASET_NAME="legmlai/openhermes-fr" | |
MAX_EPOCHS=3 | |
BATCH_SIZE=2 | |
GRADIENT_ACCUMULATION_STEPS=8 | |
LEARNING_RATE=5e-6 | |
MAX_SEQ_LENGTH=4096 | |
CONFIG_FILE="config/train_smollm3.py" | |
;; | |
"H100 Lightweight (Rapid)") | |
MODEL_NAME="HuggingFaceTB/SmolLM3-3B" | |
DATASET_NAME="legmlai/openhermes-fr" | |
MAX_EPOCHS=1 | |
BATCH_SIZE=16 | |
GRADIENT_ACCUMULATION_STEPS=4 | |
LEARNING_RATE=8e-6 | |
MAX_SEQ_LENGTH=8192 | |
DATASET_SAMPLE_SIZE=80000 | |
CONFIG_FILE="config/train_smollm3_h100_lightweight.py" | |
;; | |
"A100 Large Scale") | |
MODEL_NAME="HuggingFaceTB/SmolLM3-3B" | |
DATASET_NAME="legmlai/openhermes-fr" | |
MAX_EPOCHS=1 | |
BATCH_SIZE=8 | |
GRADIENT_ACCUMULATION_STEPS=16 | |
LEARNING_RATE=5e-6 | |
MAX_SEQ_LENGTH=8192 | |
CONFIG_FILE="config/train_smollm3_openhermes_fr_a100_large.py" | |
;; | |
"Multiple Passes") | |
MODEL_NAME="HuggingFaceTB/SmolLM3-3B" | |
DATASET_NAME="legmlai/openhermes-fr" | |
MAX_EPOCHS=4 | |
BATCH_SIZE=6 | |
GRADIENT_ACCUMULATION_STEPS=20 | |
LEARNING_RATE=3e-6 | |
MAX_SEQ_LENGTH=8192 | |
CONFIG_FILE="config/train_smollm3_openhermes_fr_a100_multiple_passes.py" | |
;; | |
"GPT-OSS Basic Training") | |
MODEL_NAME="openai/gpt-oss-20b" | |
DATASET_NAME="HuggingFaceH4/Multilingual-Thinking" | |
MAX_EPOCHS=1 | |
BATCH_SIZE=4 | |
GRADIENT_ACCUMULATION_STEPS=4 | |
LEARNING_RATE=2e-4 | |
MAX_SEQ_LENGTH=2048 | |
CONFIG_FILE="config/train_gpt_oss_basic.py" | |
;; | |
"GPT-OSS H100 Optimized") | |
MODEL_NAME="openai/gpt-oss-20b" | |
DATASET_NAME="HuggingFaceH4/Multilingual-Thinking" | |
MAX_EPOCHS=2 | |
BATCH_SIZE=8 | |
GRADIENT_ACCUMULATION_STEPS=2 | |
LEARNING_RATE=3e-4 | |
MAX_SEQ_LENGTH=4096 | |
CONFIG_FILE="config/train_gpt_oss_h100_optimized.py" | |
;; | |
"GPT-OSS Multilingual Reasoning") | |
MODEL_NAME="openai/gpt-oss-20b" | |
DATASET_NAME="HuggingFaceH4/Multilingual-Thinking" | |
MAX_EPOCHS=1 | |
BATCH_SIZE=4 | |
GRADIENT_ACCUMULATION_STEPS=4 | |
LEARNING_RATE=2e-4 | |
MAX_SEQ_LENGTH=2048 | |
CONFIG_FILE="config/train_gpt_oss_multilingual_reasoning.py" | |
;; | |
"GPT-OSS Memory Optimized") | |
MODEL_NAME="openai/gpt-oss-20b" | |
DATASET_NAME="HuggingFaceH4/Multilingual-Thinking" | |
MAX_EPOCHS=1 | |
BATCH_SIZE=1 | |
GRADIENT_ACCUMULATION_STEPS=16 | |
LEARNING_RATE=2e-4 | |
MAX_SEQ_LENGTH=1024 | |
CONFIG_FILE="config/train_gpt_oss_memory_optimized.py" | |
;; | |
"GPT-OSS OpenHermes-FR (Recommended)") | |
MODEL_NAME="openai/gpt-oss-20b" | |
DATASET_NAME="legmlai/openhermes-fr" | |
MAX_EPOCHS=1.5 | |
BATCH_SIZE=6 | |
GRADIENT_ACCUMULATION_STEPS=6 | |
LEARNING_RATE=2.5e-4 | |
MAX_SEQ_LENGTH=3072 | |
CONFIG_FILE="config/train_gpt_oss_openhermes_fr.py" | |
;; | |
"GPT-OSS OpenHermes-FR Memory Optimized") | |
MODEL_NAME="openai/gpt-oss-20b" | |
DATASET_NAME="legmlai/openhermes-fr" | |
MAX_EPOCHS=1 | |
BATCH_SIZE=2 | |
GRADIENT_ACCUMULATION_STEPS=16 | |
LEARNING_RATE=2e-4 | |
MAX_SEQ_LENGTH=1024 | |
CONFIG_FILE="config/train_gpt_oss_openhermes_fr_memory_optimized.py" | |
;; | |
"GPT-OSS Medical o1 SFT (Reasoning)") | |
MODEL_NAME="openai/gpt-oss-20b" | |
DATASET_NAME="FreedomIntelligence/medical-o1-reasoning-SFT" | |
MAX_EPOCHS=1 | |
BATCH_SIZE=2 | |
GRADIENT_ACCUMULATION_STEPS=8 | |
LEARNING_RATE=2e-4 | |
MAX_SEQ_LENGTH=2048 | |
CONFIG_FILE="config/train_gpt_oss_medical_o1_sft.py" | |
generate_medical_o1_sft_config | |
;; | |
"GPT-OSS Custom Dataset") | |
MODEL_NAME="openai/gpt-oss-20b" | |
DATASET_NAME="legmlai/openhermes-fr" # Will be customizable | |
MAX_EPOCHS=1 | |
BATCH_SIZE=4 | |
GRADIENT_ACCUMULATION_STEPS=4 | |
LEARNING_RATE=2e-4 | |
MAX_SEQ_LENGTH=2048 | |
CONFIG_FILE="config/train_gpt_oss_custom.py" | |
get_custom_dataset_config | |
;; | |
"Custom Configuration") | |
get_custom_config | |
;; | |
esac | |
} | |
# Function to get custom dataset configuration | |
get_custom_dataset_config() { | |
print_step "GPT-OSS Custom Configuration" | |
echo "======================================" | |
echo "Configure your GPT-OSS training:" | |
echo "" | |
# Dataset Configuration | |
print_info "๐ Dataset Configuration" | |
get_input "Dataset name (HuggingFace format: username/dataset)" "legmlai/openhermes-fr" DATASET_NAME | |
get_input "Dataset split" "train" DATASET_SPLIT | |
echo "" | |
echo "Dataset format options:" | |
echo "1. OpenHermes-FR (prompt + accepted_completion fields)" | |
echo "2. Messages format (chat conversations)" | |
echo "3. Text format (plain text field)" | |
echo "4. Medical o1 SFT (Question | Complex_CoT | Response)" | |
echo "5. Custom format (specify field names)" | |
echo "" | |
select_option "Select dataset format:" "OpenHermes-FR" "Messages format" "Text format" "Medical o1 SFT" "Custom format" DATASET_FORMAT | |
case "$DATASET_FORMAT" in | |
"OpenHermes-FR") | |
INPUT_FIELD="prompt" | |
TARGET_FIELD="accepted_completion" | |
DATASET_FORMAT_CODE="openhermes_fr" | |
FILTER_BAD_ENTRIES="true" | |
;; | |
"Messages format") | |
INPUT_FIELD="messages" | |
TARGET_FIELD="" | |
DATASET_FORMAT_CODE="messages" | |
FILTER_BAD_ENTRIES="false" | |
;; | |
"Text format") | |
INPUT_FIELD="text" | |
TARGET_FIELD="" | |
DATASET_FORMAT_CODE="text" | |
FILTER_BAD_ENTRIES="false" | |
;; | |
"Medical o1 SFT") | |
INPUT_FIELD="Question" | |
TARGET_FIELD="Response" | |
DATASET_FORMAT_CODE="medical_o1_sft" | |
FILTER_BAD_ENTRIES="false" | |
# Field mappings and prefixes | |
get_input "Question field name" "Question" MED_Q_FIELD | |
get_input "Reasoning field name" "Complex_CoT" MED_REASON_FIELD | |
get_input "Response field name" "Response" MED_RESP_FIELD | |
get_input "Reason prefix (before reasoning)" "Reasoning: " MED_REASON_PREFIX | |
get_input "Answer prefix (before final answer)" "Final Answer: " MED_ANSWER_PREFIX | |
;; | |
"Custom format") | |
get_input "Input field name" "prompt" INPUT_FIELD | |
get_input "Target field name (leave empty if not needed)" "accepted_completion" TARGET_FIELD | |
DATASET_FORMAT_CODE="custom" | |
get_input "Filter bad entries? (true/false)" "false" FILTER_BAD_ENTRIES | |
;; | |
esac | |
# Optional Harmony context | |
echo "" | |
print_info "๐ฌ Harmony Context (optional)" | |
get_input "System message" "You are GPT-Tonic, a large language model trained by TonicAI." SYSTEM_MESSAGE | |
get_input "Developer message" "You are an intelligent assistant that can answer customer service queries" DEVELOPER_MESSAGE | |
get_input "Model identity/persona (used in chat_template_kwargs.model_identity)" "You are GPT-Tonic, a large language model trained by TonicAI." MODEL_IDENTITY | |
# Dataset Filtering Options | |
echo "" | |
print_info "๐ Dataset Filtering Options" | |
get_input "Maximum samples to use (leave empty for all)" "" MAX_SAMPLES | |
get_input "Minimum sequence length" "10" MIN_LENGTH | |
get_input "Maximum sequence length (leave empty for auto)" "" MAX_LENGTH | |
# Training Hyperparameters | |
echo "" | |
print_info "โ๏ธ Training Hyperparameters" | |
get_input "Number of epochs" "1.0" NUM_EPOCHS | |
get_input "Batch size per device" "4" BATCH_SIZE | |
get_input "Gradient accumulation steps" "4" GRAD_ACCUM_STEPS | |
get_input "Learning rate" "2e-4" LEARNING_RATE | |
get_input "Minimum learning rate" "2e-5" MIN_LR | |
get_input "Weight decay" "0.01" WEIGHT_DECAY | |
get_input "Warmup ratio" "0.03" WARMUP_RATIO | |
# Sequence Length | |
echo "" | |
print_info "๐ Sequence Configuration" | |
get_input "Maximum sequence length" "2048" MAX_SEQ_LENGTH | |
# LoRA Configuration | |
echo "" | |
print_info "๐๏ธ LoRA Configuration" | |
get_input "LoRA rank" "16" LORA_RANK | |
get_input "LoRA alpha" "32" LORA_ALPHA | |
get_input "LoRA dropout" "0.05" LORA_DROPOUT | |
# Memory & Performance | |
echo "" | |
print_info "๐พ Memory & Performance" | |
select_option "Mixed precision:" "BF16 (recommended)" "FP16" "FP32" MIXED_PRECISION | |
get_input "Data loading workers" "4" NUM_WORKERS | |
select_option "Quantization:" "MXFP4 (default)" "4-bit BNB" "None" QUANTIZATION_TYPE | |
# Advanced Options | |
echo "" | |
echo "Advanced options (press Enter for defaults):" | |
get_input "Max gradient norm" "1.0" MAX_GRAD_NORM | |
get_input "Logging steps" "10" LOGGING_STEPS | |
get_input "Evaluation steps" "100" EVAL_STEPS | |
get_input "Save steps" "500" SAVE_STEPS | |
# Update the custom config file with user's choices | |
update_enhanced_gpt_oss_config | |
} | |
# Function to materialize a default Medical o1 SFT config file | |
generate_medical_o1_sft_config() { | |
print_info "Ensuring medical o1 SFT configuration exists..." | |
if [ -f "config/train_gpt_oss_medical_o1_sft.py" ]; then | |
print_status "Medical o1 SFT config already present" | |
return | |
fi | |
cat > config/train_gpt_oss_medical_o1_sft.py << 'EOF' | |
""" | |
Auto-generated placeholder. A richer version will be imported at runtime. | |
""" | |
from config.train_gpt_oss_medical_o1_sft import config # reuse main config | |
EOF | |
print_status "Medical o1 SFT config placeholder created" | |
} | |
# Function to get custom configuration | |
get_custom_config() { | |
print_step "Custom Configuration Setup" | |
echo "=============================" | |
get_input "Model name" "HuggingFaceTB/SmolLM3-3B" MODEL_NAME | |
get_input "Dataset name" "HuggingFaceTB/smoltalk" DATASET_NAME | |
get_input "Number of epochs" "3" MAX_EPOCHS | |
get_input "Batch size" "2" BATCH_SIZE | |
get_input "Gradient accumulation steps" "8" GRADIENT_ACCUMULATION_STEPS | |
get_input "Learning rate" "5e-6" LEARNING_RATE | |
get_input "Max sequence length" "4096" MAX_SEQ_LENGTH | |
# Select config file based on dataset | |
if [[ "$DATASET_NAME" == *"openhermes"* ]]; then | |
CONFIG_FILE="config/train_smollm3_openhermes_fr.py" | |
else | |
CONFIG_FILE="config/train_smollm3.py" | |
fi | |
} | |
# Function to update enhanced GPT-OSS config with user choices | |
update_enhanced_gpt_oss_config() { | |
print_info "Generating enhanced custom GPT-OSS configuration..." | |
# Process mixed precision setting | |
case "$MIXED_PRECISION" in | |
"BF16 (recommended)") | |
FP16="False" | |
BF16="True" | |
;; | |
"FP16") | |
FP16="True" | |
BF16="False" | |
;; | |
"FP32") | |
FP16="False" | |
BF16="False" | |
;; | |
esac | |
# Process quantization setting | |
case "$QUANTIZATION_TYPE" in | |
"MXFP4 (default)") | |
USE_QUANTIZATION="True" | |
QUANTIZATION_CONFIG='{"dequantize": True, "load_in_4bit": False}' | |
;; | |
"4-bit BNB") | |
USE_QUANTIZATION="True" | |
QUANTIZATION_CONFIG='{"dequantize": False, "load_in_4bit": True, "bnb_4bit_compute_dtype": "bfloat16", "bnb_4bit_use_double_quant": True, "bnb_4bit_quant_type": "nf4"}' | |
;; | |
"None") | |
USE_QUANTIZATION="False" | |
QUANTIZATION_CONFIG='{"dequantize": False, "load_in_4bit": False}' | |
;; | |
esac | |
# Safely serialize free-text fields to valid Python literals | |
SYSTEM_MESSAGE_LITERAL=$(SYSTEM_MESSAGE="$SYSTEM_MESSAGE" python - <<'PY' | |
import json, os | |
v = os.environ.get('SYSTEM_MESSAGE', '') | |
print('None' if not v else json.dumps(v)) | |
PY | |
) | |
DEVELOPER_MESSAGE_LITERAL=$(DEVELOPER_MESSAGE="$DEVELOPER_MESSAGE" python - <<'PY' | |
import json, os | |
v = os.environ.get('DEVELOPER_MESSAGE', '') | |
print('None' if not v else json.dumps(v)) | |
PY | |
) | |
MODEL_IDENTITY_DEFAULT="You are GPT-Tonic, a large language model trained by TonicAI." | |
MODEL_IDENTITY_LITERAL=$(MODEL_IDENTITY="${MODEL_IDENTITY:-$MODEL_IDENTITY_DEFAULT}" python - <<'PY' | |
import json, os | |
v = os.environ.get('MODEL_IDENTITY', '') | |
print(json.dumps(v)) | |
PY | |
) | |
# Create enhanced config file with all user choices | |
cat > "$CONFIG_FILE" << EOF | |
""" | |
GPT-OSS Enhanced Custom Training Configuration - Generated by launch.sh | |
Dataset: $DATASET_NAME ($DATASET_FORMAT) | |
Optimized for: ${DATASET_FORMAT} format with full customization | |
""" | |
from config.train_gpt_oss_custom import GPTOSSEnhancedCustomConfig | |
# Create enhanced config with all customizations | |
config = GPTOSSEnhancedCustomConfig( | |
# ============================================================================ | |
# DATASET CONFIGURATION | |
# ============================================================================ | |
dataset_name="$DATASET_NAME", | |
dataset_split="$DATASET_SPLIT", | |
dataset_format="$DATASET_FORMAT_CODE", | |
input_field="$INPUT_FIELD", | |
target_field=$(if [ -n "$TARGET_FIELD" ]; then echo "\"$TARGET_FIELD\""; else echo "None"; fi), | |
filter_bad_entries=$FILTER_BAD_ENTRIES, | |
max_samples=$(if [ -n "$MAX_SAMPLES" ]; then echo "$MAX_SAMPLES"; else echo "None"; fi), | |
min_length=$MIN_LENGTH, | |
max_length=$(if [ -n "$MAX_LENGTH" ]; then echo "$MAX_LENGTH"; else echo "None"; fi), | |
# ============================================================================ | |
# HARMONY CONFIGURATION | |
# ============================================================================ | |
system_message=$SYSTEM_MESSAGE_LITERAL, | |
developer_message=$DEVELOPER_MESSAGE_LITERAL, | |
use_harmony_format=True, | |
chat_template_kwargs={ | |
"add_generation_prompt": True, | |
"tokenize": False, | |
"auto_insert_role": True, | |
"reasoning_effort": "medium", | |
"model_identity": $MODEL_IDENTITY_LITERAL, | |
"builtin_tools": [], | |
}, | |
# Medical o1 SFT mapping (ignored unless dataset_format == 'medical_o1_sft') | |
question_field=$(if [ -n "$MED_Q_FIELD" ]; then echo "\"$MED_Q_FIELD\""; else echo "\"Question\""; fi), | |
reasoning_field=$(if [ -n "$MED_REASON_FIELD" ]; then echo "\"$MED_REASON_FIELD\""; else echo "\"Complex_CoT\""; fi), | |
response_field=$(if [ -n "$MED_RESP_FIELD" ]; then echo "\"$MED_RESP_FIELD\""; else echo "\"Response\""; fi), | |
reason_prefix=$(if [ -n "$MED_REASON_PREFIX" ]; then printf '%s' "\"$MED_REASON_PREFIX\""; else echo "\"Reasoning: \""; fi), | |
answer_prefix=$(if [ -n "$MED_ANSWER_PREFIX" ]; then printf '%s' "\"$MED_ANSWER_PREFIX\""; else echo "\"Final Answer: \""; fi), | |
# ============================================================================ | |
# TRAINING HYPERPARAMETERS | |
# ============================================================================ | |
num_train_epochs=$NUM_EPOCHS, | |
batch_size=$BATCH_SIZE, | |
gradient_accumulation_steps=$GRAD_ACCUM_STEPS, | |
learning_rate=$LEARNING_RATE, | |
min_lr=$MIN_LR, | |
weight_decay=$WEIGHT_DECAY, | |
warmup_ratio=$WARMUP_RATIO, | |
max_grad_norm=$MAX_GRAD_NORM, | |
# ============================================================================ | |
# MODEL CONFIGURATION | |
# ============================================================================ | |
max_seq_length=$MAX_SEQ_LENGTH, | |
# ============================================================================ | |
# MIXED PRECISION | |
# ============================================================================ | |
fp16=$FP16, | |
bf16=$BF16, | |
# ============================================================================ | |
# LORA CONFIGURATION | |
# ============================================================================ | |
lora_config={ | |
"r": $LORA_RANK, | |
"lora_alpha": $LORA_ALPHA, | |
"lora_dropout": $LORA_DROPOUT, | |
"target_modules": "all-linear", | |
"bias": "none", | |
"task_type": "CAUSAL_LM", | |
}, | |
# ============================================================================ | |
# QUANTIZATION CONFIGURATION | |
# ============================================================================ | |
use_quantization=$USE_QUANTIZATION, | |
quantization_config=$QUANTIZATION_CONFIG, | |
# ============================================================================ | |
# PERFORMANCE CONFIGURATION | |
# ============================================================================ | |
dataloader_num_workers=$NUM_WORKERS, | |
dataloader_pin_memory=True, | |
group_by_length=True, | |
# ============================================================================ | |
# LOGGING & EVALUATION | |
# ============================================================================ | |
logging_steps=$LOGGING_STEPS, | |
eval_steps=$EVAL_STEPS, | |
save_steps=$SAVE_STEPS, | |
# ============================================================================ | |
# RUNTIME CONFIGURATION | |
# ============================================================================ | |
experiment_name="$EXPERIMENT_NAME", | |
trackio_url="$TRACKIO_URL", | |
dataset_repo="$TRACKIO_DATASET_REPO", | |
enable_tracking=True, | |
) | |
EOF | |
print_status "Enhanced GPT-OSS configuration generated successfully!" | |
print_info "Configuration saved to: $CONFIG_FILE" | |
} | |
# Function to create training configuration file | |
create_training_config() { | |
local config_file="$1" | |
cat > "$config_file" << EOF | |
""" | |
SmolLM3 Training Configuration - Generated by launch.sh | |
Optimized for: $TRAINING_CONFIG_TYPE | |
""" | |
from config.train_smollm3 import SmolLM3Config | |
config = SmolLM3Config( | |
# Trainer type selection | |
trainer_type="$TRAINER_TYPE", | |
# Model configuration | |
model_name="$MODEL_NAME", | |
max_seq_length=$MAX_SEQ_LENGTH, | |
use_flash_attention=True, | |
use_gradient_checkpointing=True, | |
# Training configuration | |
batch_size=$BATCH_SIZE, | |
gradient_accumulation_steps=$GRADIENT_ACCUMULATION_STEPS, | |
learning_rate=$LEARNING_RATE, | |
weight_decay=0.01, | |
warmup_steps=100, | |
max_iters=None, # Will be calculated based on epochs | |
eval_interval=100, | |
log_interval=10, | |
save_interval=500, | |
# Optimizer configuration | |
optimizer="adamw", | |
beta1=0.9, | |
beta2=0.95, | |
eps=1e-8, | |
# Scheduler configuration | |
scheduler="cosine", | |
min_lr=1e-6, | |
# Mixed precision | |
fp16=True, | |
bf16=False, | |
# Logging and saving | |
save_steps=$SAVE_STEPS, | |
eval_steps=$EVAL_STEPS, | |
logging_steps=$LOGGING_STEPS, | |
save_total_limit=3, | |
# Evaluation | |
eval_strategy="steps", | |
metric_for_best_model="eval_loss", | |
greater_is_better=False, | |
load_best_model_at_end=True, | |
# Data configuration | |
dataset_name="$DATASET_NAME", | |
dataset_split="train", | |
input_field="prompt", | |
target_field="completion", | |
filter_bad_entries=False, | |
bad_entry_field="bad_entry", | |
# Chat template configuration | |
use_chat_template=True, | |
chat_template_kwargs={ | |
"enable_thinking": False, | |
"add_generation_prompt": True, | |
"no_think_system_message": True | |
}, | |
# Trackio monitoring configuration | |
enable_tracking=True, | |
trackio_url="$TRACKIO_URL", | |
trackio_token=None, | |
log_artifacts=True, | |
log_metrics=True, | |
log_config=True, | |
experiment_name="$EXPERIMENT_NAME", | |
# HF Datasets configuration | |
dataset_repo="$TRACKIO_DATASET_REPO", | |
monitoring_mode="$MONITORING_MODE", | |
) | |
EOF | |
} | |
# Main script starts here | |
print_header "SmolLM3 End-to-End Fine-tuning Pipeline" | |
echo "==============================================" | |
echo "" | |
# Step 1: Get user credentials (write and read tokens) | |
print_step "Step 1: User Authentication" | |
echo "================================" | |
print_info "You'll need two Hugging Face tokens:" | |
echo "1. Write Token - Used initially for training and creating repositories" | |
echo "2. Read Token - Will replace the write token in Trackio Space after training for security" | |
echo "" | |
print_info "The pipeline will start with the write token in HF_TOKEN, then switch to read token automatically." | |
echo "" | |
print_info "Getting Write Token (for training operations)..." | |
get_secure_token_input "Enter your Hugging Face WRITE token (get from https://huggingface.co/settings/tokens)" HF_WRITE_TOKEN "Write" | |
print_info "Getting Read Token (for Trackio Space security)..." | |
get_secure_token_input "Enter your Hugging Face READ token (get from https://huggingface.co/settings/tokens)" HF_READ_TOKEN "Read" | |
# Validate write token and get username automatically | |
print_info "Validating write token and getting username..." | |
if validate_hf_token_and_get_username "$HF_WRITE_TOKEN"; then | |
print_status "Write token validated successfully" | |
print_info "Username: $HF_USERNAME" | |
else | |
print_error "Invalid write token. Please check your token and try again." | |
exit 1 | |
fi | |
# Validate read token belongs to same user | |
print_info "Validating read token..." | |
if validate_hf_token_and_get_username "$HF_READ_TOKEN"; then | |
READ_USERNAME="$HF_USERNAME" | |
if [ "$READ_USERNAME" = "$HF_USERNAME" ]; then | |
print_status "Read token validated successfully" | |
print_info "Both tokens belong to user: $HF_USERNAME" | |
else | |
print_error "Token mismatch: write token user ($HF_USERNAME) != read token user ($READ_USERNAME)" | |
print_error "Both tokens must belong to the same user" | |
exit 1 | |
fi | |
else | |
print_error "Invalid read token. Please check your token and try again." | |
exit 1 | |
fi | |
# Set the main HF_TOKEN to write token for training operations (will be switched later) | |
HF_TOKEN="$HF_WRITE_TOKEN" | |
# Step 2: Select training configuration | |
print_step "Step 2: Training Configuration" | |
echo "==================================" | |
# 2.1 Select model family first | |
select_option "Select model family:" "SmolLM3" "GPT-OSS" MODEL_FAMILY | |
# 2.2 Show only the configurations for the selected family and prompt selection | |
show_training_configs "$MODEL_FAMILY" | |
if [ "$MODEL_FAMILY" = "SmolLM3" ]; then | |
select_option "Select training configuration:" \ | |
"Basic Training" \ | |
"H100 Lightweight (Rapid)" \ | |
"A100 Large Scale" \ | |
"Multiple Passes" \ | |
"Custom Configuration" \ | |
TRAINING_CONFIG_TYPE | |
else | |
select_option "Select training configuration:" \ | |
"GPT-OSS Basic Training" \ | |
"GPT-OSS H100 Optimized" \ | |
"GPT-OSS Multilingual Reasoning" \ | |
"GPT-OSS Memory Optimized" \ | |
"GPT-OSS OpenHermes-FR (Recommended)" \ | |
"GPT-OSS OpenHermes-FR Memory Optimized" \ | |
"GPT-OSS Custom Dataset" \ | |
"GPT-OSS Medical o1 SFT (Reasoning)" \ | |
TRAINING_CONFIG_TYPE | |
fi | |
get_training_config "$TRAINING_CONFIG_TYPE" | |
# Step 2.4: Monitoring mode selection | |
print_step "Step 2.4: Monitoring Mode" | |
echo "==============================" | |
echo "Choose how to log your experiment:" | |
select_option "Select monitoring mode:" \ | |
"Both (Trackio + Dataset)" \ | |
"Trackio only" \ | |
"Dataset only" \ | |
"None (local only)" \ | |
MONITORING_MODE_OPTION | |
case "$MONITORING_MODE_OPTION" in | |
"Both (Trackio + Dataset)") MONITORING_MODE="both" ;; | |
"Trackio only") MONITORING_MODE="trackio" ;; | |
"Dataset only") MONITORING_MODE="dataset" ;; | |
"None (local only)") MONITORING_MODE="none" ;; | |
*) MONITORING_MODE="both" ;; | |
esac | |
# Decide which token to use for the Trackio Space secret | |
# - dataset: read-only token (Space only needs to read datasets) | |
# - trackio/both: write token until end of training (Space writes to datasets) | |
# - none: Space is skipped | |
if [ "$MONITORING_MODE" = "dataset" ]; then | |
SPACE_DEPLOY_TOKEN="$HF_READ_TOKEN" | |
else | |
SPACE_DEPLOY_TOKEN="$HF_WRITE_TOKEN" | |
fi | |
# 2.3 Set a family-specific default model description for the model card | |
if [ "$MODEL_FAMILY" = "GPT-OSS" ]; then | |
DEFAULT_MODEL_DESCRIPTION="A fine-tuned GPT-OSS-20B model optimized for multilingual reasoning and instruction following." | |
else | |
DEFAULT_MODEL_DESCRIPTION="A fine-tuned SmolLM3-3B model optimized for instruction following and French language tasks." | |
fi | |
# Step 3: Get experiment details | |
print_step "Step 3: Experiment Details" | |
echo "==============================" | |
# Derive default experiment name from smolfactory + chosen model family | |
if [ "$MODEL_FAMILY" = "GPT-OSS" ]; then | |
FAMILY_SLUG="gpt-oss" | |
else | |
FAMILY_SLUG="smollm3" | |
fi | |
DEFAULT_EXPERIMENT_NAME="smolfactory-${FAMILY_SLUG}_$(date +%Y%m%d_%H%M%S)" | |
get_input "Experiment name" "$DEFAULT_EXPERIMENT_NAME" EXPERIMENT_NAME | |
# Configure model repository name (customizable) | |
print_info "Setting up model repository name..." | |
# Ask only for short repo name; we'll prefix with username automatically | |
DEFAULT_SHORT_REPO="smolfactory-$(date +%Y%m%d)" | |
get_input "Model repository name (repo only, no username/)" "$DEFAULT_SHORT_REPO" REPO_SHORT | |
# Build full repo id using detected username | |
REPO_NAME="$HF_USERNAME/$REPO_SHORT" | |
print_status "Model repository: $REPO_NAME" | |
# Automatically create dataset repository | |
print_info "Setting up Trackio dataset repository automatically..." | |
# Set default dataset repository | |
TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments" | |
# Ask if user wants to customize dataset name | |
echo "" | |
echo "Dataset repository options:" | |
echo "1. Use default name (trackio-experiments)" | |
echo "2. Customize dataset name" | |
echo "" | |
read -p "Choose option (1/2): " dataset_option | |
if [ "$dataset_option" = "2" ]; then | |
get_input "Custom dataset name (without username)" "trackio-experiments" CUSTOM_DATASET_NAME | |
if python3 scripts/dataset_tonic/setup_hf_dataset.py "$HF_TOKEN" "$CUSTOM_DATASET_NAME" 2>/dev/null; then | |
# Update with the actual repository name from the script | |
TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" | |
print_status "Custom dataset repository created successfully" | |
else | |
print_warning "Custom dataset creation failed, using default" | |
if python3 scripts/dataset_tonic/setup_hf_dataset.py "$HF_TOKEN" 2>/dev/null; then | |
TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" | |
print_status "Default dataset repository created successfully" | |
else | |
print_warning "Automatic dataset creation failed, using default" | |
TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments" | |
fi | |
fi | |
else | |
if python3 scripts/dataset_tonic/setup_hf_dataset.py "$HF_TOKEN" 2>/dev/null; then | |
TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" | |
print_status "Dataset repository created successfully" | |
else | |
print_warning "Automatic dataset creation failed, using default" | |
TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments" | |
fi | |
fi | |
# Ensure TRACKIO_DATASET_REPO is always set | |
if [ -z "$TRACKIO_DATASET_REPO" ]; then | |
TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments" | |
print_warning "Dataset repository not set, using default: $TRACKIO_DATASET_REPO" | |
fi | |
# Step 3.5: Select trainer type | |
print_step "Step 3.5: Trainer Type Selection" | |
echo "====================================" | |
echo "Select the type of training to perform:" | |
echo "1. SFT (Supervised Fine-tuning) - Standard instruction tuning" | |
echo " - Uses SFTTrainer for instruction following" | |
echo " - Suitable for most fine-tuning tasks" | |
echo " - Optimized for instruction datasets" | |
echo "" | |
echo "2. DPO (Direct Preference Optimization) - Preference-based training" | |
echo " - Uses DPOTrainer for preference learning" | |
echo " - Requires preference datasets (chosen/rejected pairs)" | |
echo " - Optimizes for human preferences" | |
echo "" | |
select_option "Select trainer type:" "SFT" "DPO" TRAINER_TYPE | |
# Convert trainer type to lowercase for the training script | |
TRAINER_TYPE_LOWER=$(echo "$TRAINER_TYPE" | tr '[:upper:]' '[:lower:]') | |
# Step 4: Training parameters | |
print_step "Step 4: Training Parameters" | |
echo "===============================" | |
echo "Current configuration:" | |
echo " Model: $MODEL_NAME" | |
echo " Dataset: $DATASET_NAME" | |
echo " Trainer Type: $TRAINER_TYPE" | |
if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then | |
echo " Dataset Sample Size: ${DATASET_SAMPLE_SIZE:-80000}" | |
fi | |
echo " Epochs: $MAX_EPOCHS" | |
echo " Batch Size: $BATCH_SIZE" | |
echo " Gradient Accumulation: $GRADIENT_ACCUMULATION_STEPS" | |
echo " Learning Rate: $LEARNING_RATE" | |
echo " Sequence Length: $MAX_SEQ_LENGTH" | |
get_input "Save steps" "500" SAVE_STEPS | |
get_input "Evaluation steps" "100" EVAL_STEPS | |
get_input "Logging steps" "10" LOGGING_STEPS | |
# Step 5: Trackio Space configuration (skip when local-only) | |
if [ "$MONITORING_MODE" != "none" ]; then | |
print_step "Step 5: Trackio Space Configuration" | |
echo "======================================" | |
get_input "Trackio Space name" "trackio-monitoring-$(date +%Y%m%d)" TRACKIO_SPACE_NAME | |
TRACKIO_URL="https://huggingface.co/spaces/$HF_USERNAME/$TRACKIO_SPACE_NAME" | |
else | |
TRACKIO_SPACE_NAME="" | |
TRACKIO_URL="" | |
fi | |
# Step 6: Confirm configuration | |
print_step "Step 6: Configuration Summary" | |
echo "=================================" | |
echo "" | |
echo "๐ Configuration Summary:" | |
echo "========================" | |
echo " User: $HF_USERNAME (auto-detected from token)" | |
echo " Experiment: $EXPERIMENT_NAME" | |
echo " Model: $MODEL_NAME" | |
echo " Dataset: $DATASET_NAME" | |
echo " Training Config: $TRAINING_CONFIG_TYPE" | |
echo " Trainer Type: $TRAINER_TYPE" | |
if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then | |
echo " Dataset Sample Size: ${DATASET_SAMPLE_SIZE:-80000}" | |
fi | |
echo " Epochs: $MAX_EPOCHS" | |
echo " Batch Size: $BATCH_SIZE" | |
echo " Learning Rate: $LEARNING_RATE" | |
echo " Model Repo: $REPO_NAME (auto-generated)" | |
echo " Author: $AUTHOR_NAME" | |
echo " Trackio Space: $TRACKIO_URL" | |
echo " HF Dataset: $TRACKIO_DATASET_REPO" | |
echo " Monitoring Mode: $MONITORING_MODE" | |
echo "" | |
read -p "Proceed with this configuration? (y/N): " confirm | |
if [[ ! "$confirm" =~ ^[Yy]$ ]]; then | |
print_info "Configuration cancelled. Exiting." | |
exit 0 | |
fi | |
# Step 7: Environment setup | |
print_step "Step 7: Environment Setup" | |
echo "============================" | |
print_info "Installing system dependencies..." | |
# Check if we're already root or if sudo is available | |
if [ "$EUID" -eq 0 ]; then | |
# Already root, no need for sudo | |
print_info "Running as root, skipping sudo..." | |
apt-get update | |
apt-get install -y git curl wget unzip python3-pip python3-venv | |
elif command -v sudo >/dev/null 2>&1; then | |
# sudo is available, use it | |
print_info "Using sudo for system dependencies..." | |
sudo apt-get update | |
sudo apt-get install -y git curl wget unzip python3-pip python3-venv | |
else | |
# No sudo available, try without it | |
print_warning "sudo not available, attempting to install without sudo..." | |
if command -v apt-get >/dev/null 2>&1; then | |
apt-get update | |
apt-get install -y git curl wget unzip python3-pip python3-venv | |
else | |
print_warning "apt-get not available, skipping system dependencies..." | |
print_info "Please ensure git, curl, wget, unzip, python3-pip, and python3-venv are installed" | |
fi | |
fi | |
# Set environment variables before creating virtual environment | |
print_info "Setting up environment variables..." | |
export HF_TOKEN="$HF_TOKEN" | |
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" | |
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN" | |
export HF_USERNAME="$HF_USERNAME" | |
print_info "Creating Python virtual environment..." | |
python3 -m venv smollm3_env | |
source smollm3_env/bin/activate | |
# Re-export environment variables in the virtual environment | |
print_info "Configuring environment variables in virtual environment..." | |
export HF_TOKEN="$HF_TOKEN" | |
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" | |
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN" | |
export HF_USERNAME="$HF_USERNAME" | |
print_info "Installing PyTorch with CUDA support..." | |
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 | |
print_info "Installing project dependencies..." | |
pip install -r requirements/requirements_core.txt | |
print_info "Installing additional dependencies..." | |
pip install trl>=0.7.0 | |
pip install peft>=0.4.0 | |
pip install accelerate>=0.20.0 | |
pip install huggingface-hub>=0.16.0 | |
pip install datasets>=2.14.0 | |
pip install requests>=2.31.0 | |
# Step 8: Authentication setup | |
print_step "Step 8: Authentication Setup" | |
echo "================================" | |
print_info "Setting up Hugging Face token for Python API..." | |
print_status "HF token configured for Python API usage" | |
print_info "Username: $HF_USERNAME (auto-detected from token)" | |
# Verify token is available in the virtual environment | |
print_info "Verifying token availability in virtual environment..." | |
if [ -n "$HF_TOKEN" ] && [ -n "$HUGGING_FACE_HUB_TOKEN" ]; then | |
print_status "โ Token properly configured in virtual environment" | |
print_info " HF_TOKEN: ${HF_TOKEN:0:10}...${HF_TOKEN: -4} (currently using WRITE token)" | |
print_info " HUGGING_FACE_HUB_TOKEN: ${HUGGING_FACE_HUB_TOKEN:0:10}...${HUGGING_FACE_HUB_TOKEN: -4}" | |
print_info " Will be switched to READ token after training for security" | |
else | |
print_error "โ Token not properly configured in virtual environment" | |
print_error "Please check your token and try again" | |
exit 1 | |
fi | |
# Configure git for HF operations | |
print_step "Step 8.1: Git Configuration" | |
echo "================================" | |
print_info "Configuring git for Hugging Face operations..." | |
# Get user's email for git configuration | |
get_input "Enter the email you used to register your account at huggingface for git configuration" "" GIT_EMAIL | |
# Configure git locally (not globally) for this project | |
git config user.email "$GIT_EMAIL" | |
git config user.name "$HF_USERNAME" | |
# Verify git configuration | |
print_info "Verifying git configuration..." | |
if git config user.email && git config user.name; then | |
print_status "Git configured successfully" | |
print_info " Email: $(git config user.email)" | |
print_info " Name: $(git config user.name)" | |
else | |
print_error "Failed to configure git" | |
exit 1 | |
fi | |
# Step 8.2: Author Information for Model Card | |
print_step "Step 8.2: Author Information" | |
echo "=================================" | |
print_info "This information will be used in the model card and citation." | |
get_input "Author name for model card" "$HF_USERNAME" AUTHOR_NAME | |
print_info "Model description will be used in the model card and repository." | |
get_input "Model description" "$DEFAULT_MODEL_DESCRIPTION" MODEL_DESCRIPTION | |
# Step 9: Deploy Trackio Space (automated, skipped for local-only) | |
if [ "$MONITORING_MODE" != "none" ]; then | |
print_step "Step 9: Deploying Trackio Space" | |
echo "===================================" | |
cd scripts/trackio_tonic | |
print_info "Deploying Trackio Space ..." | |
print_info "Space name: $TRACKIO_SPACE_NAME" | |
print_info "Username will be auto-detected from token" | |
if [ "$MONITORING_MODE" = "dataset" ]; then | |
print_info "Deploying with READ token (Space will NOT write to datasets)" | |
else | |
print_info "Deploying with WRITE token (Space will write to datasets during training)" | |
fi | |
# Ensure environment variables are available for the script | |
export HF_TOKEN="$SPACE_DEPLOY_TOKEN" | |
export HUGGING_FACE_HUB_TOKEN="$SPACE_DEPLOY_TOKEN" | |
export HF_USERNAME="$HF_USERNAME" | |
# Run deployment script with automated features (pass deploy token) | |
python deploy_trackio_space.py "$TRACKIO_SPACE_NAME" "$SPACE_DEPLOY_TOKEN" "$GIT_EMAIL" "$HF_USERNAME" "$TRACKIO_DATASET_REPO" | |
print_status "Trackio Space deployed: $TRACKIO_URL" | |
else | |
print_info "Skipping Trackio Space deployment (monitoring_mode=$MONITORING_MODE)" | |
fi | |
if [ "$MONITORING_MODE" != "none" ]; then | |
# Step 10: Setup HF Dataset (automated) โ required unless local-only | |
print_step "Step 10: Setting up HF Dataset" | |
echo "==================================" | |
cd ../dataset_tonic | |
print_info "Setting up HF Dataset with automated features..." | |
print_info "Username will be auto-detected from token" | |
print_info "Dataset repository: $TRACKIO_DATASET_REPO" | |
# Ensure environment variables are available for the script | |
export HF_TOKEN="$HF_WRITE_TOKEN" | |
export HUGGING_FACE_HUB_TOKEN="$HF_WRITE_TOKEN" | |
export HF_USERNAME="$HF_USERNAME" | |
python setup_hf_dataset.py "$HF_TOKEN" | |
else | |
print_info "Skipping HF Dataset setup (monitoring_mode=$MONITORING_MODE)" | |
fi | |
# Step 11: Configure Trackio (automated) โ skipped for local-only | |
if [ "$MONITORING_MODE" != "none" ]; then | |
print_step "Step 11: Configuring Trackio" | |
echo "=================================" | |
cd ../trackio_tonic | |
print_info "Configuring Trackio ..." | |
print_info "Username will be auto-detected from token" | |
# Ensure environment variables are available for the script | |
export HF_TOKEN="$SPACE_DEPLOY_TOKEN" | |
export HUGGING_FACE_HUB_TOKEN="$SPACE_DEPLOY_TOKEN" | |
export HF_USERNAME="$HF_USERNAME" | |
python configure_trackio.py | |
else | |
print_info "Skipping Trackio configuration (monitoring_mode=$MONITORING_MODE)" | |
fi | |
# Step 12: Training Configuration | |
print_step "Step 12: Training Configuration" | |
echo "===================================" | |
cd ../.. | |
print_info "Using existing configuration file: $CONFIG_FILE" | |
# Step 13: Dataset Configuration | |
print_step "Step 13: Dataset Configuration" | |
echo "==================================" | |
print_info "Dataset will be loaded directly by src/data.py during training" | |
print_info "Dataset: $DATASET_NAME" | |
if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then | |
print_info "Sample size: ${DATASET_SAMPLE_SIZE:-80000} (will be handled by data.py)" | |
fi | |
# Step 14: Training Parameters | |
print_step "Step 14: Training Parameters" | |
echo "================================" | |
print_info "Training parameters will be loaded from configuration file" | |
print_info "Model: $MODEL_NAME" | |
print_info "Dataset: $DATASET_NAME" | |
print_info "Batch size: $BATCH_SIZE" | |
print_info "Learning rate: $LEARNING_RATE" | |
# Step 14.5: Define Output Directory | |
print_step "Step 14.5: Output Directory Configuration" | |
echo "=============================================" | |
# Define the output directory for training results | |
OUTPUT_DIR="./outputs/${EXPERIMENT_NAME}_$(date +%Y%m%d_%H%M%S)" | |
print_info "Training output directory: $OUTPUT_DIR" | |
# Create output directory | |
mkdir -p "$OUTPUT_DIR" | |
print_status "Output directory created: $OUTPUT_DIR" | |
# Step 15: Start training | |
print_step "Step 15: Starting Training" | |
echo "==============================" | |
print_info "Starting training with configuration: $CONFIG_FILE" | |
print_info "Experiment: $EXPERIMENT_NAME" | |
print_info "Output: $OUTPUT_DIR" | |
print_info "Trackio: $TRACKIO_URL" | |
# Ensure environment variables are available for training | |
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN" | |
export HF_READ_TOKEN="$HF_READ_TOKEN" | |
export HF_TOKEN="$HF_WRITE_TOKEN" | |
export HUGGING_FACE_HUB_TOKEN="$HF_WRITE_TOKEN" | |
export HF_USERNAME="$HF_USERNAME" | |
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" | |
export OUTPUT_DIR="$OUTPUT_DIR" | |
export MONITORING_MODE="$MONITORING_MODE" | |
# Run the appropriate training script based on model type | |
if [[ "$MODEL_NAME" == *"gpt-oss"* ]]; then | |
print_info "Using GPT-OSS specialized training script..." | |
python scripts/training/train_gpt_oss.py \ | |
--config "$CONFIG_FILE" \ | |
--experiment-name "$EXPERIMENT_NAME" \ | |
--output-dir "$OUTPUT_DIR" \ | |
--trackio-url "$TRACKIO_URL" \ | |
--trainer-type "$TRAINER_TYPE_LOWER" | |
else | |
print_info "Using standard SmolLM3 training script..." | |
python scripts/training/train.py \ | |
--config "$CONFIG_FILE" \ | |
--experiment-name "$EXPERIMENT_NAME" \ | |
--output-dir "$OUTPUT_DIR" \ | |
--trackio-url "$TRACKIO_URL" \ | |
--trainer-type "$TRAINER_TYPE_LOWER" | |
fi | |
# Step 16: Push model to Hugging Face Hub | |
print_step "Step 16: Pushing Model to HF Hub" | |
echo "=====================================" | |
print_info "Pushing model to: $REPO_NAME" | |
print_info "Checkpoint: $OUTPUT_DIR" | |
# Ensure environment variables are available for model push | |
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN" | |
export HF_READ_TOKEN="$HF_READ_TOKEN" | |
export HF_TOKEN="$HF_TOKEN" | |
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN" | |
export HF_USERNAME="$HF_USERNAME" | |
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" | |
export OUTPUT_DIR="$OUTPUT_DIR" | |
# Run the appropriate push script based on model type | |
if [[ "$MODEL_NAME" == *"gpt-oss"* ]]; then | |
print_info "Using GPT-OSS specialized push script..." | |
python scripts/model_tonic/push_gpt_oss_to_huggingface.py "$OUTPUT_DIR" "$REPO_NAME" \ | |
--token "$HF_TOKEN" \ | |
--trackio-url "$TRACKIO_URL" \ | |
--experiment-name "$EXPERIMENT_NAME" \ | |
--dataset-repo "$TRACKIO_DATASET_REPO" \ | |
--author-name "$AUTHOR_NAME" \ | |
--model-description "$MODEL_DESCRIPTION" \ | |
--training-config-type "$TRAINING_CONFIG_TYPE" \ | |
--model-name "$MODEL_NAME" \ | |
--dataset-name "$DATASET_NAME" \ | |
--batch-size "$BATCH_SIZE" \ | |
--learning-rate "$LEARNING_RATE" \ | |
--max-epochs "$MAX_EPOCHS" \ | |
--max-seq-length "$MAX_SEQ_LENGTH" \ | |
--trainer-type "$TRAINER_TYPE" | |
else | |
print_info "Using standard SmolLM3 push script..." | |
python scripts/model_tonic/push_to_huggingface.py "$OUTPUT_DIR" "$REPO_NAME" \ | |
--token "$HF_TOKEN" \ | |
--trackio-url "$TRACKIO_URL" \ | |
--experiment-name "$EXPERIMENT_NAME" \ | |
--dataset-repo "$TRACKIO_DATASET_REPO" \ | |
--author-name "$AUTHOR_NAME" \ | |
--model-description "$MODEL_DESCRIPTION" \ | |
--training-config-type "$TRAINING_CONFIG_TYPE" \ | |
--model-name "$MODEL_NAME" \ | |
--dataset-name "$DATASET_NAME" \ | |
--batch-size "$BATCH_SIZE" \ | |
--learning-rate "$LEARNING_RATE" \ | |
--max-epochs "$MAX_EPOCHS" \ | |
--max-seq-length "$MAX_SEQ_LENGTH" \ | |
--trainer-type "$TRAINER_TYPE" | |
fi | |
# Step 16.5: Switch Trackio Space to Read Token (Security) โ only for trackio/both | |
if [ "$MONITORING_MODE" = "trackio" ] || [ "$MONITORING_MODE" = "both" ]; then | |
print_step "Step 16.5: Switching to Read Token for Security" | |
echo "====================================================" | |
print_info "Switching Trackio Space HF_TOKEN from write token to read token for security..." | |
print_info "This ensures the space can only read datasets, not write to repositories" | |
# Ensure environment variables are available for token switch | |
export HF_TOKEN="$HF_WRITE_TOKEN" # Use write token to update space | |
export HUGGING_FACE_HUB_TOKEN="$HF_WRITE_TOKEN" | |
export HF_USERNAME="$HF_USERNAME" | |
# Switch HF_TOKEN in Trackio Space from write to read token | |
cd scripts/trackio_tonic | |
python switch_to_read_token.py "$HF_USERNAME/$TRACKIO_SPACE_NAME" "$HF_READ_TOKEN" "$HF_WRITE_TOKEN" | |
if [ $? -eq 0 ]; then | |
print_status "โ Successfully switched Trackio Space HF_TOKEN to read token" | |
print_info "๐ Space now uses read-only permissions for security" | |
else | |
print_warning "โ ๏ธ Failed to switch to read token, but continuing with pipeline" | |
print_info "You can manually switch the token in your Space settings later" | |
fi | |
cd ../.. | |
else | |
print_info "Skipping token switch (monitoring_mode=$MONITORING_MODE)" | |
fi | |
# Step 17: Deploy Demo Space | |
print_step "Step 17: Deploying Demo Space" | |
echo "==================================" | |
# Ask user if they want to deploy a demo space | |
get_input "Do you want to deploy a demo space to test your model? (y/n)" "y" "DEPLOY_DEMO" | |
if [ "$DEPLOY_DEMO" = "y" ] || [ "$DEPLOY_DEMO" = "Y" ]; then | |
print_info "Deploying demo space for model testing..." | |
# Use main model for demo (no quantization) | |
DEMO_MODEL_ID="$REPO_NAME" | |
DEMO_SUBFOLDER="" | |
# Ensure environment variables are available for demo deployment | |
export HF_TOKEN="$HF_TOKEN" | |
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN" | |
export HF_USERNAME="$HF_USERNAME" | |
print_info "Deploying demo space for model: $DEMO_MODEL_ID" | |
print_info "Using subfolder: $DEMO_SUBFOLDER" | |
# Additional demo parameters | |
DEMO_EXTRA_ARGS="" | |
if [ "$MODEL_FAMILY" = "GPT-OSS" ]; then | |
# Prebuilt medical example for GPT-OSS demo | |
DEMO_EXTRA_ARGS="--examples-type medical" | |
fi | |
python scripts/deploy_demo_space.py \ | |
--hf-token "$HF_WRITE_TOKEN" \ | |
--space-secret-token "$HF_READ_TOKEN" \ | |
--hf-username "$HF_USERNAME" \ | |
--model-id "$DEMO_MODEL_ID" \ | |
--subfolder "$DEMO_SUBFOLDER" \ | |
--space-name "${REPO_SHORT}-demo" \ | |
--config-file "$CONFIG_FILE" \ | |
$DEMO_EXTRA_ARGS | |
if [ $? -eq 0 ]; then | |
DEMO_SPACE_URL="https://huggingface.co/spaces/$HF_USERNAME/${REPO_SHORT}-demo" | |
print_status "โ Demo space deployed successfully: $DEMO_SPACE_URL" | |
else | |
print_warning "โ ๏ธ Demo space deployment failed, but continuing with pipeline" | |
fi | |
else | |
print_info "Skipping demo space deployment" | |
fi | |
# Step 18: Create summary report | |
print_step "Step 18: Creating Summary Report" | |
echo "====================================" | |
cat > training_summary.md << EOF | |
# SmolLM3 Fine-tuning Summary | |
## Configuration | |
- **Model**: $MODEL_NAME | |
- **Dataset**: $DATASET_NAME | |
- **Experiment**: $EXPERIMENT_NAME | |
- **Repository**: $REPO_NAME | |
- **Trackio Space**: $TRACKIO_URL | |
- **HF Dataset**: $TRACKIO_DATASET_REPO | |
- **Training Config**: $TRAINING_CONFIG_TYPE | |
- **Trainer Type**: $TRAINER_TYPE | |
- **Security**: Single HF_TOKEN switched from write to read token | |
$(if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then | |
echo "- **Dataset Sample Size**: ${DATASET_SAMPLE_SIZE:-80000}" | |
fi) | |
## Training Parameters | |
- **Batch Size**: $BATCH_SIZE | |
- **Gradient Accumulation**: $GRADIENT_ACCUMULATION_STEPS | |
- **Learning Rate**: $LEARNING_RATE | |
- **Max Epochs**: $MAX_EPOCHS | |
- **Sequence Length**: $MAX_SEQ_LENGTH | |
## Results | |
- **Model Repository**: https://huggingface.co/$REPO_NAME | |
- **Trackio Monitoring**: $TRACKIO_URL | |
- **Experiment Data**: https://huggingface.co/datasets/$TRACKIO_DATASET_REPO | |
- **Security**: Trackio Space HF_TOKEN switched to read-only token for security | |
$(if [ "$DEPLOY_DEMO" = "y" ] || [ "$DEPLOY_DEMO" = "Y" ]; then | |
echo "- **Demo Space**: https://huggingface.co/spaces/$HF_USERNAME/${REPO_NAME}-demo" | |
fi) | |
## Next Steps | |
1. Monitor training progress in your Trackio Space | |
2. Check the model repository on Hugging Face Hub | |
3. Use the model in your applications | |
4. Share your results with the community | |
## Files Created | |
- Training configuration: \`$CONFIG_FILE\` | |
- Model checkpoint: \`$OUTPUT_DIR/\` | |
- Training logs: \`training.log\` | |
- Summary report: \`training_summary.md\` | |
EOF | |
print_status "Summary report saved to: training_summary.md" | |
# Final summary | |
echo "" | |
print_header "๐ End-to-End Pipeline Completed Successfully!" | |
echo "==================================================" | |
echo "" | |
echo "๐ Model: https://huggingface.co/$REPO_NAME" | |
echo "๐ Trackio: $TRACKIO_URL" | |
echo "๐ Experiment: $EXPERIMENT_NAME" | |
echo "๐ Dataset: https://huggingface.co/datasets/$TRACKIO_DATASET_REPO" | |
$(if [ "$DEPLOY_DEMO" = "y" ] || [ "$DEPLOY_DEMO" = "Y" ]; then | |
echo "๐ฎ Demo: https://huggingface.co/spaces/$HF_USERNAME/${REPO_SHORT}-demo" | |
fi) | |
echo "" | |
echo "๐ Summary report saved to: training_summary.md" | |
echo "" | |
echo "๐ Next steps:" | |
echo "1. Monitor training progress in your Trackio Space" | |
echo "2. Check the model repository on Hugging Face Hub" | |
echo "3. Your Trackio Space HF_TOKEN is now secured with read-only permissions" | |
$(if [ "$DEPLOY_DEMO" = "y" ] || [ "$DEPLOY_DEMO" = "Y" ]; then | |
echo "3. Make your huggingface space a ZeroGPU Space & Test your model" | |
fi) | |
echo "5. Use the model in your applications" | |
echo "6. Share your results with the community" | |
echo "" | |
print_status "Pipeline completed successfully!" |