Spaces:
Build error
Build error
import spaces | |
import torch | |
import torch.nn.functional as F | |
from torch import Tensor | |
from transformers import AutoTokenizer, AutoModel | |
import threading | |
import queue | |
import gradio as gr | |
import os | |
import json | |
import numpy as np | |
title = """ | |
# 👋🏻Welcome to 🙋🏻♂️Tonic's 📽️Nvidia 🛌🏻Embed V-1 !""" | |
description = """ | |
You can use this Space to test out the current model [nvidia/NV-Embed-v1](https://huggingface.co/nvidia/NV-Embed-v1). 🐣a generalist embedding model that ranks No. 1 on the Massive Text Embedding Benchmark (MTEB benchmark)(as of May 24, 2024), with 56 tasks, encompassing retrieval, reranking, classification, clustering, and semantic textual similarity tasks. | |
You can also use 📽️Nvidia 🛌🏻Embed V-1 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/NV-Embed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> | |
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [MultiTonic](https://github.com/MultiTonic) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗 | |
""" | |
tasks = { | |
'ArguAna': 'Given a claim, find documents that refute the claim', | |
'ClimateFEVER': 'Given a claim about climate change, retrieve documents that support or refute the claim', | |
'DBPedia': 'Given a query, retrieve relevant entity descriptions from DBPedia', | |
'FEVER': 'Given a claim, retrieve documents that support or refute the claim', | |
'FiQA2018': 'Given a financial question, retrieve user replies that best answer the question', | |
'HotpotQA': 'Given a multi-hop question, retrieve documents that can help answer the question', | |
'MSMARCO': 'Given a web search query, retrieve relevant passages that answer the query', | |
'NFCorpus': 'Given a question, retrieve relevant documents that best answer the question', | |
'NQ': 'Given a question, retrieve Wikipedia passages that answer the question', | |
'QuoraRetrieval': 'Given a question, retrieve questions that are semantically equivalent to the given question', | |
'SCIDOCS': 'Given a scientific paper title, retrieve paper abstracts that are cited by the given paper', | |
'SciFact': 'Given a scientific claim, retrieve documents that support or refute the claim', | |
'Touche2020': 'Given a question, retrieve detailed and persuasive arguments that answer the question', | |
'Natural Language Inference' : 'Retrieve semantically similar text', | |
'Natural Language Inference' : 'Given a premise, retrieve a hypothesis that is entailed by the premise 20k', | |
'PAQ, MSMARCO' : 'Given a web search query, retrieve relevant passages that answer the query', | |
'PAQ, MSMARCO' : 'Given a question, retrieve passages that answer the question', | |
'SQUAD' : 'Given a question, retrieve Wikipedia passages that answer the question' , | |
'StackExchange' : 'Given a question paragraph at StackExchange, retrieve a question duplicated paragraph', | |
'Natural Question' : 'Given a question, retrieve Wikipedia passages that answer the question', | |
'BioASQ' : 'Given a question, retrieve detailed question descriptions that are duplicates to the given question', | |
'STS12, STS22, STSBenchmark' : 'Retrieve semantically similar text.', | |
'AmazonCounterfactualClassification' : 'Classify a given Amazon customer review text as either counterfactual or not-counterfactual' , | |
'AmazonReviewsClassification' : 'Classify the given Amazon review into its appropriate rating category' , | |
'Banking77Classification' : 'Given a online banking query, find the corresponding intents', | |
'EmotionClassification' : 'Classify the emotion expressed in the given Twitter message into one of the six emotions:anger, fear, joy, love, sadness, and surprise', | |
'ImdbClassification': 'Classify the sentiment expressed in the given movie review text from the IMDB dataset', | |
'MTOPIntentClassification' : 'Classify the intent of the given utterance in task-oriented conversation', | |
'ToxicConversationsClassification' : 'Classify the given comments as either toxic or not toxic', | |
'TweetSentimentExtractionClassification' : 'Classify the sentiment of a given tweet as either positive, negative, or neutral', | |
'ArxivClusteringP2P' : 'Identify the main and secondary category of Arxiv papers based on the titles and abstracts', | |
'ArxivClusteringS2S' : 'Identify the main and secondary category of Arxiv papers based on the titles', | |
'BiorxivClusteringP2P' : 'Identify the main category of Biorxiv papers based on the titles and abstracts' , | |
'BiorxivClusteringS2S' : 'Identify the main category of Biorxiv papers based on the titles', | |
'MedrxivClusteringP2P' : 'Identify the main category of Medrxiv papers based on the titles and abstracts', | |
'MedrxivClusteringS2S' : 'Identify the main category of Medrxiv papers based on the titles', | |
'TwentyNewsgroupsClustering' : 'Identify the topic or theme of the given news articles' | |
} | |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30' | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Define the model and tokenizer globally | |
tokenizer = AutoTokenizer.from_pretrained('nvidia/NV-Embed-v1', trust_remote_code=True) | |
model = AutoModel.from_pretrained('nvidia/NV-Embed-v1', trust_remote_code=True).to(device) | |
# Embedding requests and response queues | |
embedding_request_queue = queue.Queue() | |
embedding_response_queue = queue.Queue() | |
def clear_cuda_cache(): | |
torch.cuda.empty_cache() | |
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: | |
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) | |
if left_padding: | |
return last_hidden_states[:, -1] | |
else: | |
sequence_lengths = attention_mask.sum(dim=1) - 1 | |
batch_size = last_hidden_states.shape[0] | |
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] | |
def format_response(embeddings): | |
return { | |
"data": [ | |
{ | |
"embedding": embeddings, | |
"index": 0, | |
"object": "embedding" | |
} | |
], | |
"model": "e5-mistral", | |
"object": "list", | |
"usage": { | |
"prompt_tokens": 17, | |
"total_tokens": 17 | |
} | |
} | |
def embedding_worker(): | |
while True: | |
# Wait for an item in the queue | |
item = embedding_request_queue.get() | |
if item is None: | |
break | |
selected_task, input_text = item | |
embeddings = compute_embeddings(selected_task, input_text) | |
formatted_response = format_response(embeddings) | |
embedding_response_queue.put(formatted_response) | |
embedding_request_queue.task_done() | |
clear_cuda_cache() | |
def compute_embeddings(selected_task, input_text): | |
try: | |
task_description = tasks[selected_task] | |
except KeyError: | |
print(f"Selected task not found: {selected_task}") | |
return f"Error: Task '{selected_task}' not found. Please select a valid task." | |
max_length = 2048 | |
processed_texts = [f'Instruct: {task_description}\nQuery: {input_text}'] | |
batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True) | |
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']] | |
batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt') | |
batch_dict = {k: v.to(device) for k, v in batch_dict.items()} | |
outputs = model(**batch_dict) | |
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) | |
embeddings = F.normalize(embeddings, p=2, dim=1) | |
embeddings_list = embeddings.detach().cpu().numpy().tolist() | |
clear_cuda_cache() | |
return embeddings_list | |
def compute_similarity(selected_task, sentence1, sentence2, extra_sentence1, extra_sentence2): | |
try: | |
task_description = tasks[selected_task] | |
except KeyError: | |
print(f"Selected task not found: {selected_task}") | |
return f"Error: Task '{selected_task}' not found. Please select a valid task." | |
# Compute embeddings for each sentence | |
embeddings1 = compute_embeddings(selected_task, sentence1) | |
embeddings2 = compute_embeddings(selected_task, sentence2) | |
embeddings3 = compute_embeddings(selected_task, extra_sentence1) | |
embeddings4 = compute_embeddings(selected_task, extra_sentence2) | |
similarity1 = compute_cosine_similarity(embeddings1, embeddings2) | |
similarity2 = compute_cosine_similarity(embeddings1, embeddings3) | |
similarity3 = compute_cosine_similarity(embeddings1, embeddings4) | |
similarity_scores = {"Similarity 1-2": similarity1, "Similarity 1-3": similarity2, "Similarity 1-4": similarity3} | |
clear_cuda_cache() | |
return similarity_scores | |
def compute_cosine_similarity(emb1, emb2): | |
tensor1 = torch.tensor(emb1).to(device).half() | |
tensor2 = torch.tensor(emb2).to(device).half() | |
similarity = F.cosine_similarity(tensor1, tensor2).item() | |
clear_cuda_cache() | |
return similarity | |
def app_interface(): | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
task_dropdown = gr.Dropdown(list(tasks.keys()), label="Select a Task", value=list(tasks.keys())[0]) | |
with gr.Tab("Sentence Similarity"): | |
sentence1_box = gr.Textbox(label="'Focus Sentence' - The 'Subject'") | |
sentence2_box = gr.Textbox(label="'Input Sentence' - 1") | |
extra_sentence1_box = gr.Textbox(label="'Input Sentence' - 2") | |
extra_sentence2_box = gr.Textbox(label="'Input Sentence' - 3") | |
similarity_button = gr.Button("Compute Similarity") | |
similarity_output = gr.Textbox(label="📽️Nvidia 🛌🏻Embed Similarity Scores") | |
similarity_button.click( | |
fn=compute_similarity, | |
inputs=[task_dropdown, sentence1_box, sentence2_box, extra_sentence1_box, extra_sentence2_box], | |
outputs=similarity_output | |
) | |
return demo | |
embedding_worker_thread = threading.Thread(target=embedding_worker, daemon=True) | |
embedding_worker_thread.start() | |
app_interface().queue() | |
app_interface().launch(share=True) |