Nvidia-Embed-V1 / app.py
Tonic's picture
Update app.py
04e92a3 verified
raw
history blame
11.5 kB
import spaces
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
import threading
import queue
import gradio as gr
import os
import json
import numpy as np
title = """
# 👋🏻Welcome to 🙋🏻‍♂️Tonic's 📽️Nvidia 🛌🏻Embed V-1 !"""
description = """
You can use this Space to test out the current model [nvidia/NV-Embed-v1](https://huggingface.co/nvidia/NV-Embed-v1). 🐣a generalist embedding model that ranks No. 1 on the Massive Text Embedding Benchmark (MTEB benchmark)(as of May 24, 2024), with 56 tasks, encompassing retrieval, reranking, classification, clustering, and semantic textual similarity tasks.
You can also use 📽️Nvidia 🛌🏻Embed V-1 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/NV-Embed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [MultiTonic](https://github.com/MultiTonic) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
tasks = {
'ArguAna': 'Given a claim, find documents that refute the claim',
'ClimateFEVER': 'Given a claim about climate change, retrieve documents that support or refute the claim',
'DBPedia': 'Given a query, retrieve relevant entity descriptions from DBPedia',
'FEVER': 'Given a claim, retrieve documents that support or refute the claim',
'FiQA2018': 'Given a financial question, retrieve user replies that best answer the question',
'HotpotQA': 'Given a multi-hop question, retrieve documents that can help answer the question',
'MSMARCO': 'Given a web search query, retrieve relevant passages that answer the query',
'NFCorpus': 'Given a question, retrieve relevant documents that best answer the question',
'NQ': 'Given a question, retrieve Wikipedia passages that answer the question',
'QuoraRetrieval': 'Given a question, retrieve questions that are semantically equivalent to the given question',
'SCIDOCS': 'Given a scientific paper title, retrieve paper abstracts that are cited by the given paper',
'SciFact': 'Given a scientific claim, retrieve documents that support or refute the claim',
'Touche2020': 'Given a question, retrieve detailed and persuasive arguments that answer the question',
'Natural Language Inference' : 'Retrieve semantically similar text',
'Natural Language Inference' : 'Given a premise, retrieve a hypothesis that is entailed by the premise 20k',
'PAQ, MSMARCO' : 'Given a web search query, retrieve relevant passages that answer the query',
'PAQ, MSMARCO' : 'Given a question, retrieve passages that answer the question',
'SQUAD' : 'Given a question, retrieve Wikipedia passages that answer the question' ,
'StackExchange' : 'Given a question paragraph at StackExchange, retrieve a question duplicated paragraph',
'Natural Question' : 'Given a question, retrieve Wikipedia passages that answer the question',
'BioASQ' : 'Given a question, retrieve detailed question descriptions that are duplicates to the given question',
'STS12, STS22, STSBenchmark' : 'Retrieve semantically similar text.',
'AmazonCounterfactualClassification' : 'Classify a given Amazon customer review text as either counterfactual or not-counterfactual' ,
'AmazonReviewsClassification' : 'Classify the given Amazon review into its appropriate rating category' ,
'Banking77Classification' : 'Given a online banking query, find the corresponding intents',
'EmotionClassification' : 'Classify the emotion expressed in the given Twitter message into one of the six emotions:anger, fear, joy, love, sadness, and surprise',
'ImdbClassification': 'Classify the sentiment expressed in the given movie review text from the IMDB dataset',
'MTOPIntentClassification' : 'Classify the intent of the given utterance in task-oriented conversation',
'ToxicConversationsClassification' : 'Classify the given comments as either toxic or not toxic',
'TweetSentimentExtractionClassification' : 'Classify the sentiment of a given tweet as either positive, negative, or neutral',
'ArxivClusteringP2P' : 'Identify the main and secondary category of Arxiv papers based on the titles and abstracts',
'ArxivClusteringS2S' : 'Identify the main and secondary category of Arxiv papers based on the titles',
'BiorxivClusteringP2P' : 'Identify the main category of Biorxiv papers based on the titles and abstracts' ,
'BiorxivClusteringS2S' : 'Identify the main category of Biorxiv papers based on the titles',
'MedrxivClusteringP2P' : 'Identify the main category of Medrxiv papers based on the titles and abstracts',
'MedrxivClusteringS2S' : 'Identify the main category of Medrxiv papers based on the titles',
'TwentyNewsgroupsClustering' : 'Identify the topic or theme of the given news articles'
}
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Define the model and tokenizer globally
tokenizer = AutoTokenizer.from_pretrained('nvidia/NV-Embed-v1', trust_remote_code=True)
model = AutoModel.from_pretrained('nvidia/NV-Embed-v1', trust_remote_code=True).to(device)
# Embedding requests and response queues
embedding_request_queue = queue.Queue()
embedding_response_queue = queue.Queue()
def clear_cuda_cache():
torch.cuda.empty_cache()
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
return last_hidden_states[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_states.shape[0]
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
def format_response(embeddings):
return {
"data": [
{
"embedding": embeddings,
"index": 0,
"object": "embedding"
}
],
"model": "e5-mistral",
"object": "list",
"usage": {
"prompt_tokens": 17,
"total_tokens": 17
}
}
def embedding_worker():
while True:
# Wait for an item in the queue
item = embedding_request_queue.get()
if item is None:
break
selected_task, input_text = item
embeddings = compute_embeddings(selected_task, input_text)
formatted_response = format_response(embeddings)
embedding_response_queue.put(formatted_response)
embedding_request_queue.task_done()
clear_cuda_cache()
@spaces.GPU
def compute_embeddings(selected_task, input_text):
try:
task_description = tasks[selected_task]
except KeyError:
print(f"Selected task not found: {selected_task}")
return f"Error: Task '{selected_task}' not found. Please select a valid task."
max_length = 2048
processed_texts = [f'Instruct: {task_description}\nQuery: {input_text}']
batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
batch_dict = {k: v.to(device) for k, v in batch_dict.items()}
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
embeddings_list = embeddings.detach().cpu().numpy().tolist()
clear_cuda_cache()
return embeddings_list
def compute_similarity(selected_task, sentence1, sentence2, extra_sentence1, extra_sentence2):
try:
task_description = tasks[selected_task]
except KeyError:
print(f"Selected task not found: {selected_task}")
return f"Error: Task '{selected_task}' not found. Please select a valid task."
# Compute embeddings for each sentence
embeddings1 = compute_embeddings(selected_task, sentence1)
embeddings2 = compute_embeddings(selected_task, sentence2)
embeddings3 = compute_embeddings(selected_task, extra_sentence1)
embeddings4 = compute_embeddings(selected_task, extra_sentence2)
similarity1 = compute_cosine_similarity(embeddings1, embeddings2)
similarity2 = compute_cosine_similarity(embeddings1, embeddings3)
similarity3 = compute_cosine_similarity(embeddings1, embeddings4)
similarity_scores = {"Similarity 1-2": similarity1, "Similarity 1-3": similarity2, "Similarity 1-4": similarity3}
clear_cuda_cache()
return similarity_scores
@spaces.GPU
def compute_cosine_similarity(emb1, emb2):
tensor1 = torch.tensor(emb1).to(device).half()
tensor2 = torch.tensor(emb2).to(device).half()
similarity = F.cosine_similarity(tensor1, tensor2).item()
clear_cuda_cache()
return similarity
def app_interface():
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
task_dropdown = gr.Dropdown(list(tasks.keys()), label="Select a Task", value=list(tasks.keys())[0])
with gr.Tab("Sentence Similarity"):
sentence1_box = gr.Textbox(label="'Focus Sentence' - The 'Subject'")
sentence2_box = gr.Textbox(label="'Input Sentence' - 1")
extra_sentence1_box = gr.Textbox(label="'Input Sentence' - 2")
extra_sentence2_box = gr.Textbox(label="'Input Sentence' - 3")
similarity_button = gr.Button("Compute Similarity")
similarity_output = gr.Textbox(label="📽️Nvidia 🛌🏻Embed Similarity Scores")
similarity_button.click(
fn=compute_similarity,
inputs=[task_dropdown, sentence1_box, sentence2_box, extra_sentence1_box, extra_sentence2_box],
outputs=similarity_output
)
return demo
embedding_worker_thread = threading.Thread(target=embedding_worker, daemon=True)
embedding_worker_thread.start()
app_interface().queue()
app_interface().launch(share=True)