|
import gradio as gr |
|
|
|
from langchain.document_loaders import OnlinePDFLoader |
|
|
|
from langchain.text_splitter import CharacterTextSplitter |
|
text_splitter = CharacterTextSplitter(chunk_size=350, chunk_overlap=0) |
|
|
|
from langchain.llms import HuggingFaceHub |
|
flan_ul2 = HuggingFaceHub(repo_id="google/flan-ul2", model_kwargs={"temperature":0.1, "max_new_tokens":300}) |
|
|
|
from langchain.embeddings import HuggingFaceHubEmbeddings |
|
embeddings = HuggingFaceHubEmbeddings() |
|
|
|
from langchain.vectorstores import Chroma |
|
|
|
from langchain.chains import RetrievalQA |
|
|
|
def pdf_changes(pdf_doc): |
|
loader = OnlinePDFLoader(pdf_doc.name) |
|
documents = loader.load() |
|
texts = text_splitter.split_documents(documents) |
|
db = Chroma.from_documents(texts, embeddings) |
|
retriever = db.as_retriever() |
|
global qa |
|
qa = RetrievalQA.from_chain_type(llm=flan_ul2, chain_type="stuff", retriever=retriever, return_source_documents=True) |
|
return "Ready" |
|
|
|
def add_text(history, text): |
|
history = history + [(text, None)] |
|
print(history) |
|
return history, "" |
|
|
|
def bot(history): |
|
print(history[-1][0]) |
|
response = infer(history[-1][0]) |
|
history[-1][1] = response |
|
return history |
|
|
|
def infer(question): |
|
|
|
query = question |
|
result = qa({"query": query}) |
|
|
|
return result |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file") |
|
langchain_status = gr.Textbox() |
|
load_pdf = gr.Button("Load pdf to langchain") |
|
|
|
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350) |
|
question = gr.Textbox(label="Question") |
|
|
|
|
|
load_pdf.click(pdf_changes, pdf_doc, langchain_status, queue=False) |
|
|
|
|
|
question.submit(add_text, [chatbot, question], [chatbot, question]).then( |
|
bot, chatbot, chatbot |
|
) |
|
|
|
demo.launch() |