Tingusto commited on
Commit
5ea91d8
·
1 Parent(s): d0a5224

Enhance Basic Agent Evaluation Runner with improved error handling, logging, and user instructions. Refactor question fetching and submission processes for better clarity and robustness.

Browse files
Files changed (1) hide show
  1. app.py +109 -32
app.py CHANGED
@@ -1,15 +1,22 @@
 
1
  import os
 
2
  import gradio as gr
3
  import requests
4
  import pandas as pd
5
  from langchain_core.messages import HumanMessage
6
  from agent import build_graph
7
- from dotenv import load_dotenv
8
 
9
- load_dotenv()
10
 
 
 
 
11
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
12
 
 
 
 
 
13
  class BasicAgent:
14
  """A langgraph agent."""
15
  def __init__(self):
@@ -18,67 +25,92 @@ class BasicAgent:
18
 
19
  def __call__(self, question: str) -> str:
20
  print(f"Agent received question (first 50 chars): {question[:50]}...")
 
21
  messages = [HumanMessage(content=question)]
22
- messages = self.graph.invoke({"messages": messages})
23
- answer = messages['messages'][-1].content
24
- return answer[14:]
25
-
26
- def run_and_submit_all(profile: gr.OAuthProfile | None):
27
- """Fetches questions, runs the agent, submits answers, and displays results."""
28
- space_id = os.getenv("SPACE_ID")
29
-
30
- if not profile:
 
 
 
 
 
 
 
 
 
31
  return "Please Login to Hugging Face with the button.", None
32
 
33
- username = profile.username
34
- print(f"User logged in: {username}")
35
-
36
  api_url = DEFAULT_API_URL
37
  questions_url = f"{api_url}/questions"
38
  submit_url = f"{api_url}/submit"
39
 
 
40
  try:
41
  agent = BasicAgent()
42
  except Exception as e:
 
43
  return f"Error initializing agent: {e}", None
44
-
45
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
 
46
 
 
 
47
  try:
48
  response = requests.get(questions_url, timeout=15)
49
  response.raise_for_status()
50
  questions_data = response.json()
51
  if not questions_data:
52
- return "Fetched questions list is empty.", None
 
53
  print(f"Fetched {len(questions_data)} questions.")
54
- except Exception as e:
 
55
  return f"Error fetching questions: {e}", None
 
 
 
 
 
 
 
56
 
 
57
  results_log = []
58
  answers_payload = []
59
  print(f"Running agent on {len(questions_data)} questions...")
60
-
61
  for item in questions_data:
62
  task_id = item.get("task_id")
63
  question_text = item.get("question")
64
  if not task_id or question_text is None:
 
65
  continue
66
  try:
67
  submitted_answer = agent(question_text)
68
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
69
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
70
  except Exception as e:
71
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
72
 
73
  if not answers_payload:
 
74
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
75
 
76
- submission_data = {
77
- "username": username.strip(),
78
- "agent_code": agent_code,
79
- "answers": answers_payload
80
- }
81
 
 
 
82
  try:
83
  response = requests.post(submit_url, json=submission_data, timeout=60)
84
  response.raise_for_status()
@@ -90,24 +122,59 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
90
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
91
  f"Message: {result_data.get('message', 'No message received.')}"
92
  )
93
- return final_status, pd.DataFrame(results_log)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  except Exception as e:
95
- return f"Submission Failed: {str(e)}", pd.DataFrame(results_log)
 
 
 
96
 
97
- # Build Gradio Interface
 
98
  with gr.Blocks() as demo:
99
  gr.Markdown("# Basic Agent Evaluation Runner")
100
  gr.Markdown(
101
  """
102
  **Instructions:**
103
- 1. Log in to your Hugging Face account using the button below.
104
- 2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
 
 
 
 
 
105
  """
106
  )
107
 
108
  gr.LoginButton()
 
109
  run_button = gr.Button("Run Evaluation & Submit All Answers")
 
110
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
111
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
112
 
113
  run_button.click(
@@ -117,14 +184,24 @@ with gr.Blocks() as demo:
117
 
118
  if __name__ == "__main__":
119
  print("\n" + "-"*30 + " App Starting " + "-"*30)
120
- space_id_startup = os.getenv("SPACE_ID")
 
 
 
 
 
 
 
 
121
 
122
- if space_id_startup:
123
  print(f"✅ SPACE_ID found: {space_id_startup}")
124
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
 
125
  else:
126
- print("ℹ️ SPACE_ID environment variable not found (running locally?).")
127
 
128
  print("-"*(60 + len(" App Starting ")) + "\n")
 
129
  print("Launching Gradio Interface for Basic Agent Evaluation...")
130
  demo.launch(debug=True, share=False)
 
1
+ """ Basic Agent Evaluation Runner"""
2
  import os
3
+ import inspect
4
  import gradio as gr
5
  import requests
6
  import pandas as pd
7
  from langchain_core.messages import HumanMessage
8
  from agent import build_graph
 
9
 
 
10
 
11
+
12
+ # (Keep Constants as is)
13
+ # --- Constants ---
14
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
15
 
16
+ # --- Basic Agent Definition ---
17
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
18
+
19
+
20
  class BasicAgent:
21
  """A langgraph agent."""
22
  def __init__(self):
 
25
 
26
  def __call__(self, question: str) -> str:
27
  print(f"Agent received question (first 50 chars): {question[:50]}...")
28
+ # Wrap the question in a HumanMessage from langchain_core
29
  messages = [HumanMessage(content=question)]
30
+ result = self.graph.invoke({"messages": messages})
31
+ last_message = result['messages'][-1]
32
+ return last_message.content
33
+
34
+
35
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
36
+ """
37
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
38
+ and displays the results.
39
+ """
40
+ # --- Determine HF Space Runtime URL and Repo URL ---
41
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
42
+
43
+ if profile:
44
+ username= f"{profile.username}"
45
+ print(f"User logged in: {username}")
46
+ else:
47
+ print("User not logged in.")
48
  return "Please Login to Hugging Face with the button.", None
49
 
 
 
 
50
  api_url = DEFAULT_API_URL
51
  questions_url = f"{api_url}/questions"
52
  submit_url = f"{api_url}/submit"
53
 
54
+ # 1. Instantiate Agent ( modify this part to create your agent)
55
  try:
56
  agent = BasicAgent()
57
  except Exception as e:
58
+ print(f"Error instantiating agent: {e}")
59
  return f"Error initializing agent: {e}", None
60
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
61
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
62
+ print(agent_code)
63
 
64
+ # 2. Fetch Questions
65
+ print(f"Fetching questions from: {questions_url}")
66
  try:
67
  response = requests.get(questions_url, timeout=15)
68
  response.raise_for_status()
69
  questions_data = response.json()
70
  if not questions_data:
71
+ print("Fetched questions list is empty.")
72
+ return "Fetched questions list is empty or invalid format.", None
73
  print(f"Fetched {len(questions_data)} questions.")
74
+ except requests.exceptions.RequestException as e:
75
+ print(f"Error fetching questions: {e}")
76
  return f"Error fetching questions: {e}", None
77
+ except requests.exceptions.JSONDecodeError as e:
78
+ print(f"Error decoding JSON response from questions endpoint: {e}")
79
+ print(f"Response text: {response.text[:500]}")
80
+ return f"Error decoding server response for questions: {e}", None
81
+ except Exception as e:
82
+ print(f"An unexpected error occurred fetching questions: {e}")
83
+ return f"An unexpected error occurred fetching questions: {e}", None
84
 
85
+ # 3. Run your Agent
86
  results_log = []
87
  answers_payload = []
88
  print(f"Running agent on {len(questions_data)} questions...")
 
89
  for item in questions_data:
90
  task_id = item.get("task_id")
91
  question_text = item.get("question")
92
  if not task_id or question_text is None:
93
+ print(f"Skipping item with missing task_id or question: {item}")
94
  continue
95
  try:
96
  submitted_answer = agent(question_text)
97
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
98
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
99
  except Exception as e:
100
+ print(f"Error running agent on task {task_id}: {e}")
101
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
102
 
103
  if not answers_payload:
104
+ print("Agent did not produce any answers to submit.")
105
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
106
 
107
+ # 4. Prepare Submission
108
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
109
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
110
+ print(status_update)
 
111
 
112
+ # 5. Submit
113
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
114
  try:
115
  response = requests.post(submit_url, json=submission_data, timeout=60)
116
  response.raise_for_status()
 
122
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
123
  f"Message: {result_data.get('message', 'No message received.')}"
124
  )
125
+ print("Submission successful.")
126
+ results_df = pd.DataFrame(results_log)
127
+ return final_status, results_df
128
+ except requests.exceptions.HTTPError as e:
129
+ error_detail = f"Server responded with status {e.response.status_code}."
130
+ try:
131
+ error_json = e.response.json()
132
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
133
+ except requests.exceptions.JSONDecodeError:
134
+ error_detail += f" Response: {e.response.text[:500]}"
135
+ status_message = f"Submission Failed: {error_detail}"
136
+ print(status_message)
137
+ results_df = pd.DataFrame(results_log)
138
+ return status_message, results_df
139
+ except requests.exceptions.Timeout:
140
+ status_message = "Submission Failed: The request timed out."
141
+ print(status_message)
142
+ results_df = pd.DataFrame(results_log)
143
+ return status_message, results_df
144
+ except requests.exceptions.RequestException as e:
145
+ status_message = f"Submission Failed: Network error - {e}"
146
+ print(status_message)
147
+ results_df = pd.DataFrame(results_log)
148
+ return status_message, results_df
149
  except Exception as e:
150
+ status_message = f"An unexpected error occurred during submission: {e}"
151
+ print(status_message)
152
+ results_df = pd.DataFrame(results_log)
153
+ return status_message, results_df
154
 
155
+
156
+ # --- Build Gradio Interface using Blocks ---
157
  with gr.Blocks() as demo:
158
  gr.Markdown("# Basic Agent Evaluation Runner")
159
  gr.Markdown(
160
  """
161
  **Instructions:**
162
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
163
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
164
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
165
+ ---
166
+ **Disclaimers:**
167
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
168
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
169
  """
170
  )
171
 
172
  gr.LoginButton()
173
+
174
  run_button = gr.Button("Run Evaluation & Submit All Answers")
175
+
176
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
177
+ # Removed max_rows=10 from DataFrame constructor
178
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
179
 
180
  run_button.click(
 
184
 
185
  if __name__ == "__main__":
186
  print("\n" + "-"*30 + " App Starting " + "-"*30)
187
+ # Check for SPACE_HOST and SPACE_ID at startup for information
188
+ space_host_startup = os.getenv("SPACE_HOST")
189
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
190
+
191
+ if space_host_startup:
192
+ print(f"✅ SPACE_HOST found: {space_host_startup}")
193
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
194
+ else:
195
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
196
 
197
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
198
  print(f"✅ SPACE_ID found: {space_id_startup}")
199
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
200
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
201
  else:
202
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
203
 
204
  print("-"*(60 + len(" App Starting ")) + "\n")
205
+
206
  print("Launching Gradio Interface for Basic Agent Evaluation...")
207
  demo.launch(debug=True, share=False)