Tingusto commited on
Commit
d0a5224
·
1 Parent(s): 2f65b93

Refine app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -162
app.py CHANGED
@@ -1,97 +1,84 @@
1
  import os
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
6
- from agent import BasicAgent
 
7
  from dotenv import load_dotenv
8
 
9
- # Load environment variables
10
  load_dotenv()
11
 
12
- # (Keep Constants as is)
13
- # --- Constants ---
14
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  def run_and_submit_all(profile: gr.OAuthProfile | None):
17
- """
18
- Fetches all questions, runs the BasicAgent on them, submits all answers,
19
- and displays the results.
20
- """
21
- # --- Determine HF Space Runtime URL and Repo URL ---
22
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
23
-
24
- if profile:
25
- username= f"{profile.username}"
26
- print(f"User logged in: {username}")
27
- else:
28
- print("User not logged in.")
29
  return "Please Login to Hugging Face with the button.", None
30
 
 
 
 
31
  api_url = DEFAULT_API_URL
32
  questions_url = f"{api_url}/questions"
33
  submit_url = f"{api_url}/submit"
34
 
35
- # 1. Instantiate Agent ( modify this part to create your agent)
36
  try:
37
  agent = BasicAgent()
38
  except Exception as e:
39
- print(f"Error instantiating agent: {e}")
40
  return f"Error initializing agent: {e}", None
41
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
42
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
43
- print(agent_code)
44
 
45
- # 2. Fetch Questions
46
- print(f"Fetching questions from: {questions_url}")
47
  try:
48
  response = requests.get(questions_url, timeout=15)
49
  response.raise_for_status()
50
  questions_data = response.json()
51
  if not questions_data:
52
- print("Fetched questions list is empty.")
53
- return "Fetched questions list is empty or invalid format.", None
54
  print(f"Fetched {len(questions_data)} questions.")
55
- except requests.exceptions.RequestException as e:
56
- print(f"Error fetching questions: {e}")
57
- return f"Error fetching questions: {e}", None
58
- except requests.exceptions.JSONDecodeError as e:
59
- print(f"Error decoding JSON response from questions endpoint: {e}")
60
- print(f"Response text: {response.text[:500]}")
61
- return f"Error decoding server response for questions: {e}", None
62
  except Exception as e:
63
- print(f"An unexpected error occurred fetching questions: {e}")
64
- return f"An unexpected error occurred fetching questions: {e}", None
65
 
66
- # 3. Run your Agent
67
  results_log = []
68
  answers_payload = []
69
  print(f"Running agent on {len(questions_data)} questions...")
 
70
  for item in questions_data:
71
  task_id = item.get("task_id")
72
  question_text = item.get("question")
73
  if not task_id or question_text is None:
74
- print(f"Skipping item with missing task_id or question: {item}")
75
  continue
76
  try:
77
  submitted_answer = agent(question_text)
78
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
79
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
80
  except Exception as e:
81
- print(f"Error running agent on task {task_id}: {e}")
82
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
83
 
84
  if not answers_payload:
85
- print("Agent did not produce any answers to submit.")
86
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
87
 
88
- # 4. Prepare Submission
89
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
90
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
91
- print(status_update)
 
92
 
93
- # 5. Submit
94
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
95
  try:
96
  response = requests.post(submit_url, json=submission_data, timeout=60)
97
  response.raise_for_status()
@@ -103,61 +90,24 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
103
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
104
  f"Message: {result_data.get('message', 'No message received.')}"
105
  )
106
- print("Submission successful.")
107
- results_df = pd.DataFrame(results_log)
108
- return final_status, results_df
109
- except requests.exceptions.HTTPError as e:
110
- error_detail = f"Server responded with status {e.response.status_code}."
111
- try:
112
- error_json = e.response.json()
113
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
114
- except requests.exceptions.JSONDecodeError:
115
- error_detail += f" Response: {e.response.text[:500]}"
116
- status_message = f"Submission Failed: {error_detail}"
117
- print(status_message)
118
- results_df = pd.DataFrame(results_log)
119
- return status_message, results_df
120
- except requests.exceptions.Timeout:
121
- status_message = "Submission Failed: The request timed out."
122
- print(status_message)
123
- results_df = pd.DataFrame(results_log)
124
- return status_message, results_df
125
- except requests.exceptions.RequestException as e:
126
- status_message = f"Submission Failed: Network error - {e}"
127
- print(status_message)
128
- results_df = pd.DataFrame(results_log)
129
- return status_message, results_df
130
  except Exception as e:
131
- status_message = f"An unexpected error occurred during submission: {e}"
132
- print(status_message)
133
- results_df = pd.DataFrame(results_log)
134
- return status_message, results_df
135
-
136
 
137
- # --- Build Gradio Interface using Blocks ---
138
  with gr.Blocks() as demo:
139
  gr.Markdown("# Basic Agent Evaluation Runner")
140
  gr.Markdown(
141
  """
142
  **Instructions:**
143
-
144
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
145
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
146
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
147
-
148
- ---
149
- **Disclaimers:**
150
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
151
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
152
  """
153
  )
154
 
155
  gr.LoginButton()
156
-
157
  run_button = gr.Button("Run Evaluation & Submit All Answers")
158
-
159
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
160
- # Removed max_rows=10 from DataFrame constructor
161
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
162
 
163
  run_button.click(
@@ -165,88 +115,16 @@ with gr.Blocks() as demo:
165
  outputs=[status_output, results_table]
166
  )
167
 
168
- # Initialize the agent
169
- agent = BasicAgent()
170
-
171
- def process_question(question, file=None):
172
- """
173
- Process a question using the agent and return the answer.
174
-
175
- Args:
176
- question (str): The question to be answered
177
- file (str, optional): Path to a file if the question requires file processing
178
-
179
- Returns:
180
- str: The agent's answer to the question
181
- """
182
- try:
183
- # Basic input validation
184
- if not question or not question.strip():
185
- return "Please enter a question."
186
-
187
- # Process the question using the agent
188
- answer = agent(question, file)
189
-
190
- # Format the response
191
- if isinstance(answer, dict):
192
- # If the answer is a dictionary (e.g., from file processing)
193
- return f"Answer: {answer.get('answer', 'No answer found')}"
194
- else:
195
- # If the answer is a direct string
196
- return f"Answer: {answer}"
197
-
198
- except Exception as e:
199
- return f"Error processing your question: {str(e)}"
200
-
201
- # Create the Gradio interface
202
- demo = gr.Interface(
203
- fn=process_question,
204
- inputs=[
205
- gr.Textbox(
206
- label="Question",
207
- placeholder="Enter your question here...",
208
- lines=3
209
- ),
210
- gr.File(
211
- label="Optional File Upload",
212
- file_types=["txt", "csv", "json"]
213
- )
214
- ],
215
- outputs=gr.Textbox(
216
- label="Answer",
217
- lines=5
218
- ),
219
- title="Question Answering Agent",
220
- description="Ask any question and get a precise answer. You can also upload a file for file-based questions.",
221
- examples=[
222
- ["What is the capital of France?", None],
223
- ["What is 2 + 2?", None],
224
- ["List the first three planets in our solar system", None]
225
- ],
226
- theme=gr.themes.Soft()
227
- )
228
-
229
- # Launch the interface
230
  if __name__ == "__main__":
231
  print("\n" + "-"*30 + " App Starting " + "-"*30)
232
- # Check for SPACE_HOST and SPACE_ID at startup for information
233
- space_host_startup = os.getenv("SPACE_HOST")
234
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
235
 
236
- if space_host_startup:
237
- print(f"✅ SPACE_HOST found: {space_host_startup}")
238
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
239
- else:
240
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
241
-
242
- if space_id_startup: # Print repo URLs if SPACE_ID is found
243
  print(f"✅ SPACE_ID found: {space_id_startup}")
244
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
245
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
246
  else:
247
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
248
 
249
  print("-"*(60 + len(" App Starting ")) + "\n")
250
-
251
  print("Launching Gradio Interface for Basic Agent Evaluation...")
252
  demo.launch(debug=True, share=False)
 
1
  import os
2
  import gradio as gr
3
  import requests
 
4
  import pandas as pd
5
+ from langchain_core.messages import HumanMessage
6
+ from agent import build_graph
7
  from dotenv import load_dotenv
8
 
 
9
  load_dotenv()
10
 
 
 
11
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
12
 
13
+ class BasicAgent:
14
+ """A langgraph agent."""
15
+ def __init__(self):
16
+ print("BasicAgent initialized.")
17
+ self.graph = build_graph()
18
+
19
+ def __call__(self, question: str) -> str:
20
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
21
+ messages = [HumanMessage(content=question)]
22
+ messages = self.graph.invoke({"messages": messages})
23
+ answer = messages['messages'][-1].content
24
+ return answer[14:]
25
+
26
  def run_and_submit_all(profile: gr.OAuthProfile | None):
27
+ """Fetches questions, runs the agent, submits answers, and displays results."""
28
+ space_id = os.getenv("SPACE_ID")
29
+
30
+ if not profile:
 
 
 
 
 
 
 
 
31
  return "Please Login to Hugging Face with the button.", None
32
 
33
+ username = profile.username
34
+ print(f"User logged in: {username}")
35
+
36
  api_url = DEFAULT_API_URL
37
  questions_url = f"{api_url}/questions"
38
  submit_url = f"{api_url}/submit"
39
 
 
40
  try:
41
  agent = BasicAgent()
42
  except Exception as e:
 
43
  return f"Error initializing agent: {e}", None
44
+
45
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
 
46
 
 
 
47
  try:
48
  response = requests.get(questions_url, timeout=15)
49
  response.raise_for_status()
50
  questions_data = response.json()
51
  if not questions_data:
52
+ return "Fetched questions list is empty.", None
 
53
  print(f"Fetched {len(questions_data)} questions.")
 
 
 
 
 
 
 
54
  except Exception as e:
55
+ return f"Error fetching questions: {e}", None
 
56
 
 
57
  results_log = []
58
  answers_payload = []
59
  print(f"Running agent on {len(questions_data)} questions...")
60
+
61
  for item in questions_data:
62
  task_id = item.get("task_id")
63
  question_text = item.get("question")
64
  if not task_id or question_text is None:
 
65
  continue
66
  try:
67
  submitted_answer = agent(question_text)
68
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
69
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
70
  except Exception as e:
71
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
72
 
73
  if not answers_payload:
 
74
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
75
 
76
+ submission_data = {
77
+ "username": username.strip(),
78
+ "agent_code": agent_code,
79
+ "answers": answers_payload
80
+ }
81
 
 
 
82
  try:
83
  response = requests.post(submit_url, json=submission_data, timeout=60)
84
  response.raise_for_status()
 
90
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
91
  f"Message: {result_data.get('message', 'No message received.')}"
92
  )
93
+ return final_status, pd.DataFrame(results_log)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  except Exception as e:
95
+ return f"Submission Failed: {str(e)}", pd.DataFrame(results_log)
 
 
 
 
96
 
97
+ # Build Gradio Interface
98
  with gr.Blocks() as demo:
99
  gr.Markdown("# Basic Agent Evaluation Runner")
100
  gr.Markdown(
101
  """
102
  **Instructions:**
103
+ 1. Log in to your Hugging Face account using the button below.
104
+ 2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
 
 
 
 
 
 
 
105
  """
106
  )
107
 
108
  gr.LoginButton()
 
109
  run_button = gr.Button("Run Evaluation & Submit All Answers")
 
110
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
111
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
112
 
113
  run_button.click(
 
115
  outputs=[status_output, results_table]
116
  )
117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
  if __name__ == "__main__":
119
  print("\n" + "-"*30 + " App Starting " + "-"*30)
120
+ space_id_startup = os.getenv("SPACE_ID")
 
 
121
 
122
+ if space_id_startup:
 
 
 
 
 
 
123
  print(f"✅ SPACE_ID found: {space_id_startup}")
124
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
 
125
  else:
126
+ print("ℹ️ SPACE_ID environment variable not found (running locally?).")
127
 
128
  print("-"*(60 + len(" App Starting ")) + "\n")
 
129
  print("Launching Gradio Interface for Basic Agent Evaluation...")
130
  demo.launch(debug=True, share=False)