Spaces:
Sleeping
Sleeping
Harshit
commited on
Commit
•
38b55ce
1
Parent(s):
136a1ef
sss
Browse files
app.py
CHANGED
@@ -1,214 +1,4 @@
|
|
1 |
-
import subprocess
|
2 |
-
# # Run the pip install command
|
3 |
-
subprocess.check_call(['pip', 'install', 'wordcloud'])
|
4 |
-
subprocess.check_call(['pip', 'install', 'git+https://github.com/openai/whisper.git'])
|
5 |
-
subprocess.check_call(['pip', 'install', 'transformers'])
|
6 |
-
subprocess.check_call(['pip', 'install', 'imageio==2.4.1'])
|
7 |
-
subprocess.check_call(['pip', 'install', 'moviepy'])
|
8 |
-
subprocess.check_call(['pip', 'install', 'keybert'])
|
9 |
-
subprocess.check_call(['pip', 'install', 'pytube'])
|
10 |
-
|
11 |
import streamlit as st
|
12 |
-
import os
|
13 |
-
from wordcloud import WordCloud
|
14 |
-
from keybert import KeyBERT
|
15 |
-
import pandas as pd
|
16 |
-
import matplotlib.pyplot as plt
|
17 |
-
# //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
18 |
-
|
19 |
-
|
20 |
-
from moviepy.editor import *
|
21 |
-
from tqdm import tqdm
|
22 |
-
import os
|
23 |
-
import math
|
24 |
-
import nltk
|
25 |
-
nltk.download('punkt')
|
26 |
-
import whisper
|
27 |
-
from transformers import pipeline
|
28 |
-
|
29 |
-
from pytube import YouTube
|
30 |
-
def process_video(path):
|
31 |
-
whisper_model = whisper.load_model("base")
|
32 |
-
|
33 |
-
def SpeechToTextEng(aud_path):
|
34 |
-
result = whisper_model.transcribe(aud_path)
|
35 |
-
return result["text"]
|
36 |
-
|
37 |
-
def run_range(duration):
|
38 |
-
time=duration/60
|
39 |
-
floor=math.ceil(time)
|
40 |
-
return floor
|
41 |
-
|
42 |
-
time_range=60
|
43 |
-
clip_run_range=0
|
44 |
-
clip_duration=0
|
45 |
-
|
46 |
-
def audio_generator(path,aud=0,vid=0):
|
47 |
-
if vid==1:
|
48 |
-
clip=VideoFileClip(path)
|
49 |
-
clip_duration = clip.duration
|
50 |
-
clip_run_range=run_range(clip_duration)
|
51 |
-
for i in range(clip_run_range):
|
52 |
-
left=i*time_range
|
53 |
-
right=left+time_range
|
54 |
-
# print(left,right)
|
55 |
-
|
56 |
-
crop_clip=clip.subclip(left,right)
|
57 |
-
try:
|
58 |
-
crop_clip.audio.write_audiofile("vid_to_aud"+str(i)+".mp3")
|
59 |
-
except:
|
60 |
-
pass
|
61 |
-
|
62 |
-
if aud==1:
|
63 |
-
audio_clip=AudioFileClip(path)
|
64 |
-
clip_duration = audio_clip.duration
|
65 |
-
print(clip_duration)
|
66 |
-
clip_run_range=run_range(clip_duration)
|
67 |
-
print(clip_run_range)
|
68 |
-
for i in range(clip_run_range):
|
69 |
-
left=i*time_range
|
70 |
-
right=left+time_range
|
71 |
-
# print(left,right)
|
72 |
-
crop_clip=audio_clip.subclip(left,right)
|
73 |
-
try:
|
74 |
-
crop_clip.write_audiofile("vid_to_aud"+str(i)+".mp3")
|
75 |
-
except:
|
76 |
-
pass
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
# YouTube video URL
|
82 |
-
video_url = path
|
83 |
-
|
84 |
-
# Create a YouTube object
|
85 |
-
yt = YouTube(video_url)
|
86 |
-
|
87 |
-
# Get the highest resolution video stream
|
88 |
-
stream = yt.streams.get_lowest_resolution()
|
89 |
-
|
90 |
-
# Download the video
|
91 |
-
stream.download(filename='meeting.mp4')
|
92 |
-
|
93 |
-
audio_generator("./meeting.mp4",vid=1)
|
94 |
-
transcribed_lit=[]
|
95 |
-
label_lit=[]
|
96 |
-
translated_lit=[]
|
97 |
-
|
98 |
-
for i in tqdm(range(clip_run_range)):
|
99 |
-
transcribed=SpeechToTextEng("./vid_to_aud"+str(i)+".mp3")
|
100 |
-
transcribed_lit.append(transcribed)
|
101 |
-
os.remove("./vid_to_aud"+str(i)+".mp3")
|
102 |
-
|
103 |
-
|
104 |
-
data = pd.DataFrame(
|
105 |
-
{'transcriptions': transcribed_lit
|
106 |
-
})
|
107 |
-
|
108 |
-
summarizer = pipeline("summarization")
|
109 |
-
|
110 |
-
sentiment_analyzer = pipeline("sentiment-analysis")
|
111 |
-
|
112 |
-
sumarized_lit=[]
|
113 |
-
sentiment_lit=[]
|
114 |
-
for i in tqdm(range(len(data))):
|
115 |
-
summarized=summarizer(data.iloc[i,0],min_length=75, max_length=300)[0]['summary_text']
|
116 |
-
sentiment = sentiment_analyzer(data.iloc[i,0])[0]['label']
|
117 |
-
sumarized_lit.append(summarized)
|
118 |
-
sentiment_lit.append(sentiment)
|
119 |
-
|
120 |
-
data['summary']=sumarized_lit
|
121 |
-
data['sentiment']=sentiment_lit
|
122 |
-
data.to_csv('output2.csv', index=False)
|
123 |
-
tot_text=""
|
124 |
-
for i in range(len(data)):
|
125 |
-
tot_text=tot_text+data.iloc[i,0]
|
126 |
-
|
127 |
-
key_model = KeyBERT('distilbert-base-nli-mean-tokens')
|
128 |
-
def extract_keywords(text, top_n=50):
|
129 |
-
keywords = key_model.extract_keywords(text, top_n=top_n)
|
130 |
-
return [keyword[0] for keyword in keywords]
|
131 |
-
|
132 |
-
tot_keywords=extract_keywords(tot_text)
|
133 |
-
|
134 |
-
def get_500_words(text,left,right):
|
135 |
-
words = text.split()
|
136 |
-
first_500_words = ' '.join(words[left:right])
|
137 |
-
return first_500_words
|
138 |
-
|
139 |
-
def summarize_text(text):
|
140 |
-
chunk_size = 500 # Number of words per chunk
|
141 |
-
total_summary = "" # Total summary
|
142 |
-
|
143 |
-
words = text.split() # Split the text into individual words
|
144 |
-
num_chunks = len(words) // chunk_size + 1 # Calculate the number of chunks
|
145 |
-
|
146 |
-
for i in tqdm(range(num_chunks)):
|
147 |
-
start_index = i * chunk_size
|
148 |
-
end_index = start_index + chunk_size
|
149 |
-
chunk = " ".join(words[start_index:end_index])
|
150 |
-
|
151 |
-
# Pass the chunk to the summarizer (replace with your summarization code)
|
152 |
-
chunk_summary = summarizer(chunk,min_length=75, max_length=200)[0]['summary_text']
|
153 |
-
# print(chunk_summary)
|
154 |
-
total_summary += chunk_summary
|
155 |
-
|
156 |
-
return total_summary
|
157 |
-
|
158 |
-
tot_summary=summarize_text(tot_text)
|
159 |
-
return tot_text,tot_summary,tot_keywords
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
# //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
165 |
-
def generate_word_cloud(text):
|
166 |
-
# Create a WordCloud object
|
167 |
-
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text)
|
168 |
-
|
169 |
-
# Display the generated word cloud
|
170 |
-
fig, ax = plt.subplots(figsize=(10, 5))
|
171 |
-
|
172 |
-
# Plot the word cloud on the axis
|
173 |
-
ax.imshow(wordcloud, interpolation='bilinear')
|
174 |
-
ax.axis('off')
|
175 |
-
st.pyplot(fig)
|
176 |
-
|
177 |
-
|
178 |
-
def main():
|
179 |
-
st.title("Meeting Summary Web App")
|
180 |
-
|
181 |
-
# YouTube link input
|
182 |
-
youtube_url = st.text_input("Enter the YouTube video link")
|
183 |
-
|
184 |
-
if st.button("Process Video"):
|
185 |
-
if youtube_url:
|
186 |
-
# Process the YouTube video
|
187 |
-
tot_text, tot_summary, tot_keywords = process_video(youtube_url)
|
188 |
-
|
189 |
-
# Display the output
|
190 |
-
if os.path.exists("output2.csv"):
|
191 |
-
output_df = pd.read_csv("output2.csv")
|
192 |
-
st.subheader("Transcriptions:")
|
193 |
-
st.write(output_df["transcriptions"])
|
194 |
-
|
195 |
-
st.subheader("Labels:")
|
196 |
-
st.write(output_df["labels"])
|
197 |
-
|
198 |
-
st.subheader("Word Cloud:")
|
199 |
-
generate_word_cloud(output_df["transcriptions"].str.cat(sep=' '))
|
200 |
-
|
201 |
-
st.subheader("tot_text:")
|
202 |
-
st.write(tot_text)
|
203 |
-
|
204 |
-
st.subheader("tot_summary:")
|
205 |
-
st.write(tot_summary)
|
206 |
-
|
207 |
-
st.subheader("tot_keywords:")
|
208 |
-
st.write(tot_keywords)
|
209 |
-
|
210 |
-
else:
|
211 |
-
st.write("No output file found.")
|
212 |
|
213 |
-
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
x = st.slider('Select a value')
|
4 |
+
st.write(x, 'squared is', x * x)
|