Spaces:
Runtime error
Runtime error
Harshit
commited on
Commit
•
90ddd8e
1
Parent(s):
24f4d92
first commit
Browse files
app.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
# # Run the pip install command
|
3 |
+
subprocess.check_call(['pip', 'install', 'wordcloud'])
|
4 |
+
subprocess.check_call(['pip', 'install', 'git+https://github.com/openai/whisper.git'])
|
5 |
+
subprocess.check_call(['pip', 'install', 'transformers'])
|
6 |
+
subprocess.check_call(['pip', 'install', 'imageio==2.4.1'])
|
7 |
+
subprocess.check_call(['pip', 'install', 'moviepy'])
|
8 |
+
subprocess.check_call(['pip', 'install', 'keybert'])
|
9 |
+
|
10 |
+
subprocess.check_call(['pip', 'install', 'pytube'])
|
11 |
+
|
12 |
+
import streamlit as st
|
13 |
+
import os
|
14 |
+
from wordcloud import WordCloud
|
15 |
+
from keybert import KeyBERT
|
16 |
+
import pandas as pd
|
17 |
+
import matplotlib.pyplot as plt
|
18 |
+
# //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
19 |
+
|
20 |
+
|
21 |
+
from moviepy.editor import *
|
22 |
+
from tqdm import tqdm
|
23 |
+
import os
|
24 |
+
import math
|
25 |
+
import nltk
|
26 |
+
nltk.download('punkt')
|
27 |
+
import whisper
|
28 |
+
from transformers import pipeline
|
29 |
+
|
30 |
+
from pytube import YouTube
|
31 |
+
def process_video(path):
|
32 |
+
whisper_model = whisper.load_model("base")
|
33 |
+
|
34 |
+
def SpeechToTextEng(aud_path):
|
35 |
+
result = whisper_model.transcribe(aud_path)
|
36 |
+
return result["text"]
|
37 |
+
|
38 |
+
def run_range(duration):
|
39 |
+
time=duration/60
|
40 |
+
floor=math.ceil(time)
|
41 |
+
return floor
|
42 |
+
|
43 |
+
time_range=60
|
44 |
+
clip_run_range=0
|
45 |
+
clip_duration=0
|
46 |
+
|
47 |
+
def audio_generator(path,aud=0,vid=0):
|
48 |
+
if vid==1:
|
49 |
+
clip=VideoFileClip(path)
|
50 |
+
clip_duration = clip.duration
|
51 |
+
clip_run_range=run_range(clip_duration)
|
52 |
+
for i in range(clip_run_range):
|
53 |
+
left=i*time_range
|
54 |
+
right=left+time_range
|
55 |
+
# print(left,right)
|
56 |
+
|
57 |
+
crop_clip=clip.subclip(left,right)
|
58 |
+
try:
|
59 |
+
crop_clip.audio.write_audiofile("vid_to_aud"+str(i)+".mp3")
|
60 |
+
except:
|
61 |
+
pass
|
62 |
+
|
63 |
+
if aud==1:
|
64 |
+
audio_clip=AudioFileClip(path)
|
65 |
+
clip_duration = audio_clip.duration
|
66 |
+
print(clip_duration)
|
67 |
+
clip_run_range=run_range(clip_duration)
|
68 |
+
print(clip_run_range)
|
69 |
+
for i in range(clip_run_range):
|
70 |
+
left=i*time_range
|
71 |
+
right=left+time_range
|
72 |
+
# print(left,right)
|
73 |
+
crop_clip=audio_clip.subclip(left,right)
|
74 |
+
try:
|
75 |
+
crop_clip.write_audiofile("vid_to_aud"+str(i)+".mp3")
|
76 |
+
except:
|
77 |
+
pass
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
# YouTube video URL
|
83 |
+
video_url = path
|
84 |
+
|
85 |
+
# Create a YouTube object
|
86 |
+
yt = YouTube(video_url)
|
87 |
+
|
88 |
+
# Get the highest resolution video stream
|
89 |
+
stream = yt.streams.get_lowest_resolution()
|
90 |
+
|
91 |
+
# Download the video
|
92 |
+
stream.download(filename='meeting.mp4')
|
93 |
+
|
94 |
+
audio_generator("./meeting.mp4",vid=1)
|
95 |
+
transcribed_lit=[]
|
96 |
+
label_lit=[]
|
97 |
+
translated_lit=[]
|
98 |
+
|
99 |
+
for i in tqdm(range(clip_run_range)):
|
100 |
+
transcribed=SpeechToTextEng("./vid_to_aud"+str(i)+".mp3")
|
101 |
+
transcribed_lit.append(transcribed)
|
102 |
+
os.remove("./vid_to_aud"+str(i)+".mp3")
|
103 |
+
|
104 |
+
|
105 |
+
data = pd.DataFrame(
|
106 |
+
{'transcriptions': transcribed_lit
|
107 |
+
})
|
108 |
+
|
109 |
+
summarizer = pipeline("summarization")
|
110 |
+
|
111 |
+
sentiment_analyzer = pipeline("sentiment-analysis")
|
112 |
+
|
113 |
+
sumarized_lit=[]
|
114 |
+
sentiment_lit=[]
|
115 |
+
for i in tqdm(range(len(data))):
|
116 |
+
summarized=summarizer(data.iloc[i,0],min_length=75, max_length=300)[0]['summary_text']
|
117 |
+
sentiment = sentiment_analyzer(data.iloc[i,0])[0]['label']
|
118 |
+
sumarized_lit.append(summarized)
|
119 |
+
sentiment_lit.append(sentiment)
|
120 |
+
|
121 |
+
data['summary']=sumarized_lit
|
122 |
+
data['sentiment']=sentiment_lit
|
123 |
+
data.to_csv('output2.csv', index=False)
|
124 |
+
tot_text=""
|
125 |
+
for i in range(len(data)):
|
126 |
+
tot_text=tot_text+data.iloc[i,0]
|
127 |
+
|
128 |
+
key_model = KeyBERT('distilbert-base-nli-mean-tokens')
|
129 |
+
def extract_keywords(text, top_n=50):
|
130 |
+
keywords = key_model.extract_keywords(text, top_n=top_n)
|
131 |
+
return [keyword[0] for keyword in keywords]
|
132 |
+
|
133 |
+
tot_keywords=extract_keywords(tot_text)
|
134 |
+
|
135 |
+
def get_500_words(text,left,right):
|
136 |
+
words = text.split()
|
137 |
+
first_500_words = ' '.join(words[left:right])
|
138 |
+
return first_500_words
|
139 |
+
|
140 |
+
def summarize_text(text):
|
141 |
+
chunk_size = 500 # Number of words per chunk
|
142 |
+
total_summary = "" # Total summary
|
143 |
+
|
144 |
+
words = text.split() # Split the text into individual words
|
145 |
+
num_chunks = len(words) // chunk_size + 1 # Calculate the number of chunks
|
146 |
+
|
147 |
+
for i in tqdm(range(num_chunks)):
|
148 |
+
start_index = i * chunk_size
|
149 |
+
end_index = start_index + chunk_size
|
150 |
+
chunk = " ".join(words[start_index:end_index])
|
151 |
+
|
152 |
+
# Pass the chunk to the summarizer (replace with your summarization code)
|
153 |
+
chunk_summary = summarizer(chunk,min_length=75, max_length=200)[0]['summary_text']
|
154 |
+
# print(chunk_summary)
|
155 |
+
total_summary += chunk_summary
|
156 |
+
|
157 |
+
return total_summary
|
158 |
+
|
159 |
+
tot_summary=summarize_text(tot_text)
|
160 |
+
return tot_text,tot_summary,tot_keywords
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
# //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
166 |
+
def generate_word_cloud(text):
|
167 |
+
# Create a WordCloud object
|
168 |
+
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text)
|
169 |
+
|
170 |
+
# Display the generated word cloud
|
171 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
172 |
+
|
173 |
+
# Plot the word cloud on the axis
|
174 |
+
ax.imshow(wordcloud, interpolation='bilinear')
|
175 |
+
ax.axis('off')
|
176 |
+
st.pyplot(fig)
|
177 |
+
|
178 |
+
|
179 |
+
def main():
|
180 |
+
st.title("Meeting Summary Web App")
|
181 |
+
|
182 |
+
# YouTube link input
|
183 |
+
youtube_url = st.text_input("Enter the YouTube video link")
|
184 |
+
|
185 |
+
if st.button("Process Video"):
|
186 |
+
if youtube_url:
|
187 |
+
# Process the YouTube video
|
188 |
+
tot_text, tot_summary, tot_keywords = process_video(youtube_url)
|
189 |
+
|
190 |
+
# Display the output
|
191 |
+
if os.path.exists("output2.csv"):
|
192 |
+
output_df = pd.read_csv("output2.csv")
|
193 |
+
st.subheader("Transcriptions:")
|
194 |
+
st.write(output_df["transcriptions"])
|
195 |
+
|
196 |
+
st.subheader("Labels:")
|
197 |
+
st.write(output_df["labels"])
|
198 |
+
|
199 |
+
st.subheader("Word Cloud:")
|
200 |
+
generate_word_cloud(output_df["transcriptions"].str.cat(sep=' '))
|
201 |
+
|
202 |
+
st.subheader("tot_text:")
|
203 |
+
st.write(tot_text)
|
204 |
+
|
205 |
+
st.subheader("tot_summary:")
|
206 |
+
st.write(tot_summary)
|
207 |
+
|
208 |
+
st.subheader("tot_keywords:")
|
209 |
+
st.write(tot_keywords)
|
210 |
+
|
211 |
+
else:
|
212 |
+
st.write("No output file found.")
|
213 |
+
|
214 |
+
if __name__ == "__main__":
|
215 |
+
main()
|