Tihsrah-CD's picture
dont know kitna baar ho gya ab
dd2cd7c
import streamlit as st
import pandas as pd
import pickle
from tqdm import tqdm
from Levenshtein import distance as lev
import joblib
from googletrans import Translator
from indictrans import Transliterator
from pyphonetics import RefinedSoundex
from bs4 import BeautifulSoup
import re
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Load sentiment analysis model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Seethal/sentiment_analysis_generic_dataset")
model = AutoModelForSequenceClassification.from_pretrained("Seethal/sentiment_analysis_generic_dataset")
# Define a function to get the sentiment from the model
def get_sentiment(text):
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
outputs = model(**inputs)
sentiment = torch.argmax(outputs.logits, dim=1).item()
return 'Positive' if sentiment == 1 else 'Negative'
def closest_match(word, vocabulary):
best_match = None
best_distance = float('inf')
for vocab_word in vocabulary:
dist = lev(word, vocab_word)
if dist < best_distance:
best_distance = dist
best_match = vocab_word
return best_match
def main():
st.title('Text Processing App')
rs = RefinedSoundex()
normalized_string_final=[]
translator = Translator()
trn = Transliterator(source='eng', target='hin')
with open(r'./english_vocab.pkl', "rb") as fp:
english = pickle.load(fp)
english_vocab=english
with open(r'./hinglish_vocab.pkl', "rb") as fp:
hinglish = pickle.load(fp)
hinglish_vocab=hinglish
english_vocab['and'] = ['and']
english_vocab['is'] = ['is']
def clean_tweet(tweet):
text=re.sub(r'@ [A-Za-z0-9\']+','',tweet)
text=BeautifulSoup(text,'lxml').get_text()
text=re.sub(r'https (//)[A-Za-z0-9. ]*(/) [A-Za-z0-9]+','',text)
text=re.sub(r'https[A-Za-z0-9/. ]*','',text)
text=re.sub("[^a-zA-Z]"," ",text)
text=re.sub(r'\bRT\b',' ',text)
text=re.sub(r'\bnan\b',' ',text)
return text
input_text = st.text_area("Enter the text:")
total_translated = []
if st.button('Process'):
data = {'Text': [input_text]}
df1 = pd.DataFrame(data)
df1['Text'] = df1['Text'].apply(clean_tweet)
cleaned_text = df1['Text'].tolist()[0]
total_text = [cleaned_text]
st.write("Input Text:", total_text)
for i in tqdm(total_text):
test_text=i.split()
not_changed_idx=[]
for i in range(len(test_text)):
not_changed_idx.append(0)
changed_text=[]
changed_idx=[]
for i in range(len(test_text)):
for key in english_vocab:
done=0
for val in english_vocab[key]:
if(test_text[i]==val):
changed_text.append(key)
changed_idx.append(i)
not_changed_idx[i]=1
done=1
break
if done==1:
break
normalized_string=[]
res = dict(zip(changed_idx, changed_text))
for i in range(len(test_text)):
try:
normalized_string.append(res[i])
except:
normalized_string.append(test_text[i])
print("English Normalized String:", normalized_string)
# hinglish word change
test_list = [i for i in range(len(test_text))]
changed_hing_idx = [i for i in test_list if i not in changed_idx]
hinglish_text_part = [test_text[i] for i in changed_hing_idx]
changed_text2 = []
changed_idx2 = []
for i in range(len(hinglish_text_part)):
for key in hinglish_vocab:
done = 0
for val in hinglish_vocab[key]:
if hinglish_text_part[i] == val:
changed_text2.append(key)
changed_idx2.append(i)
done = 1
break
if done == 1:
break
normalized_string2 = []
res2 = dict(zip(changed_idx2, changed_text2))
for i in range(len(hinglish_text_part)):
try:
normalized_string2.append(res2[i])
except:
normalized_string2.append(hinglish_text_part[i])
for i in changed_idx:
normalized_string2.append(res[i])
print("Hinglish Normalized String:", normalized_string)
# finding phoneme and leventise distance for unchanged word
for i in range(len(not_changed_idx)):
try:
if not_changed_idx[i] == 0:
eng_phoneme_correction = []
for j in english_vocab:
try:
phoneme = rs.distance(normalized_string2[i], j)
except:
pass
if phoneme <= 1:
eng_phoneme_correction.append(j)
eng_lev_correction = []
for k in eng_phoneme_correction:
dist = lev(normalized_string2[i], k)
if dist <= 2:
eng_lev_correction.append(k)
eng_lev_correction.extend(hing_lev_correction)
new_correction = eng_lev_correction
eng_lev_correction = []
for l in new_correction:
dist = lev(normalized_string2[i], l)
eng_lev_correction.append(dist)
min_val = min(eng_lev_correction)
min_idx = eng_lev_correction.index(min_val)
suggestion = closest_match(new_correction[min_idx], english_vocab.keys())
normalized_string2[i] = suggestion
except:
pass
normalized_string_final = normalized_string2
print("Phoneme levenshtein Distionary suggestion Normalized String:", normalized_string_final)
# sentence tagging
classifier = joblib.load(r"./classifer.joblib")
classify = []
for i in normalized_string:
test_classify = classifier(i)
classify.append(test_classify[0].get("label"))
for i in range(len(classify)):
if classify[i] == 'en':
try:
normalized_string[i] = translator.translate(normalized_string[i], src='en', dest='hi').text
except:
normalized_string[i] = "delete"
print("English -> Hindi Translated String:", normalized_string)
conversion_list = [trn.transform(i) for i in normalized_string]
print("Hinglish -> Hindi Transliterated String:", conversion_list)
sentence = [" ".join(conversion_list)]
translated = []
for i in sentence:
try:
translated_text = translator.translate(i, src='hi', dest='en')
translated.append(translated_text.text)
except:
translated.append("delete")
print("Hindi -> English Translated String:", translated)
total_translated.append(translated[0])
st.write("English Normalized String:", normalized_string)
st.write("Hinglish Normalized String:", normalized_string)
st.write("Phoneme Levenshtein Dictionary Suggestion Normalized String:", normalized_string_final)
st.write("English -> Hindi Translated String:", normalized_string)
st.write("Hinglish -> Hindi Transliterated String:", conversion_list)
st.write("Hindi -> English Translated String:", translated)
# Get the sentiment of the translated text
sentiment = get_sentiment(translated[0])
st.write("Sentiment of Translated Text:", sentiment)
if __name__ == '__main__':
main()