multimodalart HF staff commited on
Commit
a3f8f46
β€’
1 Parent(s): e3d310b

Upload 147 files

Browse files
This view is limited to 50 files because it contains too many changes. Β  See raw diff
Files changed (50) hide show
  1. .gitattributes +3 -0
  2. CODEOWNERS +1 -0
  3. LICENSE-CODE +21 -0
  4. README.md +292 -11
  5. assets/000.jpg +0 -0
  6. assets/001_with_eval.png +3 -0
  7. assets/test_image.png +0 -0
  8. assets/tile.gif +3 -0
  9. data/DejaVuSans.ttf +0 -0
  10. main.py +943 -0
  11. model_licenses/LICENSE-SDV +31 -0
  12. model_licenses/LICENSE-SDXL0.9 +75 -0
  13. model_licenses/LICENSE-SDXL1.0 +175 -0
  14. outputs/000000.mp4 +0 -0
  15. outputs/000001.mp4 +0 -0
  16. outputs/000002.mp4 +0 -0
  17. outputs/000003.mp4 +0 -0
  18. outputs/000004.mp4 +3 -0
  19. outputs/000005.mp4 +0 -0
  20. outputs/simple_video_sample/svd_xt/000000.mp4 +0 -0
  21. pyproject.toml +48 -0
  22. pytest.ini +3 -0
  23. requirements/pt13.txt +40 -0
  24. scripts/__pycache__/__init__.cpython-310.pyc +0 -0
  25. scripts/util/__pycache__/__init__.cpython-310.pyc +0 -0
  26. scripts/util/detection/__pycache__/__init__.cpython-310.pyc +0 -0
  27. scripts/util/detection/__pycache__/nsfw_and_watermark_dectection.cpython-310.pyc +0 -0
  28. sgm/__pycache__/__init__.cpython-310.pyc +0 -0
  29. sgm/__pycache__/util.cpython-310.pyc +0 -0
  30. sgm/inference/__pycache__/helpers.cpython-310.pyc +0 -0
  31. sgm/inference/api.py +8 -9
  32. sgm/models/__pycache__/__init__.cpython-310.pyc +0 -0
  33. sgm/models/__pycache__/autoencoder.cpython-310.pyc +0 -0
  34. sgm/models/__pycache__/diffusion.cpython-310.pyc +0 -0
  35. sgm/models/autoencoder.py +2 -6
  36. sgm/models/diffusion.py +2 -7
  37. sgm/modules/__pycache__/__init__.cpython-310.pyc +0 -0
  38. sgm/modules/__pycache__/attention.cpython-310.pyc +0 -0
  39. sgm/modules/__pycache__/ema.cpython-310.pyc +0 -0
  40. sgm/modules/__pycache__/video_attention.cpython-310.pyc +0 -0
  41. sgm/modules/autoencoding/__pycache__/__init__.cpython-310.pyc +0 -0
  42. sgm/modules/autoencoding/__pycache__/temporal_ae.cpython-310.pyc +0 -0
  43. sgm/modules/autoencoding/regularizers/__init__.py +2 -1
  44. sgm/modules/autoencoding/regularizers/__pycache__/__init__.cpython-310.pyc +0 -0
  45. sgm/modules/autoencoding/regularizers/__pycache__/base.cpython-310.pyc +0 -0
  46. sgm/modules/autoencoding/temporal_ae.py +4 -6
  47. sgm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc +0 -0
  48. sgm/modules/diffusionmodules/__pycache__/denoiser.cpython-310.pyc +0 -0
  49. sgm/modules/diffusionmodules/__pycache__/denoiser_scaling.cpython-310.pyc +0 -0
  50. sgm/modules/diffusionmodules/__pycache__/discretizer.cpython-310.pyc +0 -0
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/001_with_eval.png filter=lfs diff=lfs merge=lfs -text
37
+ assets/tile.gif filter=lfs diff=lfs merge=lfs -text
38
+ outputs/000004.mp4 filter=lfs diff=lfs merge=lfs -text
CODEOWNERS ADDED
@@ -0,0 +1 @@
 
 
1
+ .github @Stability-AI/infrastructure
LICENSE-CODE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 Stability AI
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md CHANGED
@@ -1,11 +1,292 @@
1
- ---
2
- title: Stable Video Diffusion
3
- emoji: πŸ“Ί
4
- colorFrom: purple
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 4.4.0
8
- app_file: app.py
9
- pinned: false
10
- license: other
11
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Generative Models by Stability AI
2
+
3
+ ![sample1](assets/000.jpg)
4
+
5
+ ## News
6
+
7
+ **November 21, 2023**
8
+
9
+ - We are releasing Stable Video Diffusion, an image-to-video model, for research purposes:
10
+ - [SVD](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid): This model was trained to generate 14
11
+ frames at resolution 576x1024 given a context frame of the same size.
12
+ We use the standard image encoder from SD 2.1, but replace the decoder with a temporally-aware `deflickering decoder`.
13
+ - [SVD-XT](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt): Same architecture as `SVD` but finetuned
14
+ for 25 frame generation.
15
+ - We provide a streamlit demo `scripts/demo/video_sampling.py` and a standalone python script `scripts/sampling/simple_video_sample.py` for inference of both models.
16
+ - Alongside the model, we release a [technical report](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets).
17
+
18
+ ![tile](assets/tile.gif)
19
+
20
+ **July 26, 2023**
21
+
22
+ - We are releasing two new open models with a
23
+ permissive [`CreativeML Open RAIL++-M` license](model_licenses/LICENSE-SDXL1.0) (see [Inference](#inference) for file
24
+ hashes):
25
+ - [SDXL-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0): An improved version
26
+ over `SDXL-base-0.9`.
27
+ - [SDXL-refiner-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0): An improved version
28
+ over `SDXL-refiner-0.9`.
29
+
30
+ ![sample2](assets/001_with_eval.png)
31
+
32
+ **July 4, 2023**
33
+
34
+ - A technical report on SDXL is now available [here](https://arxiv.org/abs/2307.01952).
35
+
36
+ **June 22, 2023**
37
+
38
+ - We are releasing two new diffusion models for research purposes:
39
+ - `SDXL-base-0.9`: The base model was trained on a variety of aspect ratios on images with resolution 1024^2. The
40
+ base model uses [OpenCLIP-ViT/G](https://github.com/mlfoundations/open_clip)
41
+ and [CLIP-ViT/L](https://github.com/openai/CLIP/tree/main) for text encoding whereas the refiner model only uses
42
+ the OpenCLIP model.
43
+ - `SDXL-refiner-0.9`: The refiner has been trained to denoise small noise levels of high quality data and as such is
44
+ not expected to work as a text-to-image model; instead, it should only be used as an image-to-image model.
45
+
46
+ If you would like to access these models for your research, please apply using one of the following links:
47
+ [SDXL-0.9-Base model](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9),
48
+ and [SDXL-0.9-Refiner](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-0.9).
49
+ This means that you can apply for any of the two links - and if you are granted - you can access both.
50
+ Please log in to your Hugging Face Account with your organization email to request access.
51
+ **We plan to do a full release soon (July).**
52
+
53
+ ## The codebase
54
+
55
+ ### General Philosophy
56
+
57
+ Modularity is king. This repo implements a config-driven approach where we build and combine submodules by
58
+ calling `instantiate_from_config()` on objects defined in yaml configs. See `configs/` for many examples.
59
+
60
+ ### Changelog from the old `ldm` codebase
61
+
62
+ For training, we use [PyTorch Lightning](https://lightning.ai/docs/pytorch/stable/), but it should be easy to use other
63
+ training wrappers around the base modules. The core diffusion model class (formerly `LatentDiffusion`,
64
+ now `DiffusionEngine`) has been cleaned up:
65
+
66
+ - No more extensive subclassing! We now handle all types of conditioning inputs (vectors, sequences and spatial
67
+ conditionings, and all combinations thereof) in a single class: `GeneralConditioner`,
68
+ see `sgm/modules/encoders/modules.py`.
69
+ - We separate guiders (such as classifier-free guidance, see `sgm/modules/diffusionmodules/guiders.py`) from the
70
+ samplers (`sgm/modules/diffusionmodules/sampling.py`), and the samplers are independent of the model.
71
+ - We adopt the ["denoiser framework"](https://arxiv.org/abs/2206.00364) for both training and inference (most notable
72
+ change is probably now the option to train continuous time models):
73
+ * Discrete times models (denoisers) are simply a special case of continuous time models (denoisers);
74
+ see `sgm/modules/diffusionmodules/denoiser.py`.
75
+ * The following features are now independent: weighting of the diffusion loss
76
+ function (`sgm/modules/diffusionmodules/denoiser_weighting.py`), preconditioning of the
77
+ network (`sgm/modules/diffusionmodules/denoiser_scaling.py`), and sampling of noise levels during
78
+ training (`sgm/modules/diffusionmodules/sigma_sampling.py`).
79
+ - Autoencoding models have also been cleaned up.
80
+
81
+ ## Installation:
82
+
83
+ <a name="installation"></a>
84
+
85
+ #### 1. Clone the repo
86
+
87
+ ```shell
88
+ git clone git@github.com:Stability-AI/generative-models.git
89
+ cd generative-models
90
+ ```
91
+
92
+ #### 2. Setting up the virtualenv
93
+
94
+ This is assuming you have navigated to the `generative-models` root after cloning it.
95
+
96
+ **NOTE:** This is tested under `python3.10`. For other python versions, you might encounter version conflicts.
97
+
98
+ **PyTorch 2.0**
99
+
100
+ ```shell
101
+ # install required packages from pypi
102
+ python3 -m venv .pt2
103
+ source .pt2/bin/activate
104
+ pip3 install -r requirements/pt2.txt
105
+ ```
106
+
107
+ #### 3. Install `sgm`
108
+
109
+ ```shell
110
+ pip3 install .
111
+ ```
112
+
113
+ #### 4. Install `sdata` for training
114
+
115
+ ```shell
116
+ pip3 install -e git+https://github.com/Stability-AI/datapipelines.git@main#egg=sdata
117
+ ```
118
+
119
+ ## Packaging
120
+
121
+ This repository uses PEP 517 compliant packaging using [Hatch](https://hatch.pypa.io/latest/).
122
+
123
+ To build a distributable wheel, install `hatch` and run `hatch build`
124
+ (specifying `-t wheel` will skip building a sdist, which is not necessary).
125
+
126
+ ```
127
+ pip install hatch
128
+ hatch build -t wheel
129
+ ```
130
+
131
+ You will find the built package in `dist/`. You can install the wheel with `pip install dist/*.whl`.
132
+
133
+ Note that the package does **not** currently specify dependencies; you will need to install the required packages,
134
+ depending on your use case and PyTorch version, manually.
135
+
136
+ ## Inference
137
+
138
+ We provide a [streamlit](https://streamlit.io/) demo for text-to-image and image-to-image sampling
139
+ in `scripts/demo/sampling.py`.
140
+ We provide file hashes for the complete file as well as for only the saved tensors in the file (
141
+ see [Model Spec](https://github.com/Stability-AI/ModelSpec) for a script to evaluate that).
142
+ The following models are currently supported:
143
+
144
+ - [SDXL-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
145
+ ```
146
+ File Hash (sha256): 31e35c80fc4829d14f90153f4c74cd59c90b779f6afe05a74cd6120b893f7e5b
147
+ Tensordata Hash (sha256): 0xd7a9105a900fd52748f20725fe52fe52b507fd36bee4fc107b1550a26e6ee1d7
148
+ ```
149
+ - [SDXL-refiner-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0)
150
+ ```
151
+ File Hash (sha256): 7440042bbdc8a24813002c09b6b69b64dc90fded4472613437b7f55f9b7d9c5f
152
+ Tensordata Hash (sha256): 0x1a77d21bebc4b4de78c474a90cb74dc0d2217caf4061971dbfa75ad406b75d81
153
+ ```
154
+ - [SDXL-base-0.9](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9)
155
+ - [SDXL-refiner-0.9](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-0.9)
156
+ - [SD-2.1-512](https://huggingface.co/stabilityai/stable-diffusion-2-1-base/blob/main/v2-1_512-ema-pruned.safetensors)
157
+ - [SD-2.1-768](https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned.safetensors)
158
+
159
+ **Weights for SDXL**:
160
+
161
+ **SDXL-1.0:**
162
+ The weights of SDXL-1.0 are available (subject to
163
+ a [`CreativeML Open RAIL++-M` license](model_licenses/LICENSE-SDXL1.0)) here:
164
+
165
+ - base model: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/
166
+ - refiner model: https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/
167
+
168
+ **SDXL-0.9:**
169
+ The weights of SDXL-0.9 are available and subject to a [research license](model_licenses/LICENSE-SDXL0.9).
170
+ If you would like to access these models for your research, please apply using one of the following links:
171
+ [SDXL-base-0.9 model](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9),
172
+ and [SDXL-refiner-0.9](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-0.9).
173
+ This means that you can apply for any of the two links - and if you are granted - you can access both.
174
+ Please log in to your Hugging Face Account with your organization email to request access.
175
+
176
+ After obtaining the weights, place them into `checkpoints/`.
177
+ Next, start the demo using
178
+
179
+ ```
180
+ streamlit run scripts/demo/sampling.py --server.port <your_port>
181
+ ```
182
+
183
+ ### Invisible Watermark Detection
184
+
185
+ Images generated with our code use the
186
+ [invisible-watermark](https://github.com/ShieldMnt/invisible-watermark/)
187
+ library to embed an invisible watermark into the model output. We also provide
188
+ a script to easily detect that watermark. Please note that this watermark is
189
+ not the same as in previous Stable Diffusion 1.x/2.x versions.
190
+
191
+ To run the script you need to either have a working installation as above or
192
+ try an _experimental_ import using only a minimal amount of packages:
193
+
194
+ ```bash
195
+ python -m venv .detect
196
+ source .detect/bin/activate
197
+
198
+ pip install "numpy>=1.17" "PyWavelets>=1.1.1" "opencv-python>=4.1.0.25"
199
+ pip install --no-deps invisible-watermark
200
+ ```
201
+
202
+ To run the script you need to have a working installation as above. The script
203
+ is then useable in the following ways (don't forget to activate your
204
+ virtual environment beforehand, e.g. `source .pt1/bin/activate`):
205
+
206
+ ```bash
207
+ # test a single file
208
+ python scripts/demo/detect.py <your filename here>
209
+ # test multiple files at once
210
+ python scripts/demo/detect.py <filename 1> <filename 2> ... <filename n>
211
+ # test all files in a specific folder
212
+ python scripts/demo/detect.py <your folder name here>/*
213
+ ```
214
+
215
+ ## Training:
216
+
217
+ We are providing example training configs in `configs/example_training`. To launch a training, run
218
+
219
+ ```
220
+ python main.py --base configs/<config1.yaml> configs/<config2.yaml>
221
+ ```
222
+
223
+ where configs are merged from left to right (later configs overwrite the same values).
224
+ This can be used to combine model, training and data configs. However, all of them can also be
225
+ defined in a single config. For example, to run a class-conditional pixel-based diffusion model training on MNIST,
226
+ run
227
+
228
+ ```bash
229
+ python main.py --base configs/example_training/toy/mnist_cond.yaml
230
+ ```
231
+
232
+ **NOTE 1:** Using the non-toy-dataset
233
+ configs `configs/example_training/imagenet-f8_cond.yaml`, `configs/example_training/txt2img-clipl.yaml`
234
+ and `configs/example_training/txt2img-clipl-legacy-ucg-training.yaml` for training will require edits depending on the
235
+ used dataset (which is expected to stored in tar-file in
236
+ the [webdataset-format](https://github.com/webdataset/webdataset)). To find the parts which have to be adapted, search
237
+ for comments containing `USER:` in the respective config.
238
+
239
+ **NOTE 2:** This repository supports both `pytorch1.13` and `pytorch2`for training generative models. However for
240
+ autoencoder training as e.g. in `configs/example_training/autoencoder/kl-f4/imagenet-attnfree-logvar.yaml`,
241
+ only `pytorch1.13` is supported.
242
+
243
+ **NOTE 3:** Training latent generative models (as e.g. in `configs/example_training/imagenet-f8_cond.yaml`) requires
244
+ retrieving the checkpoint from [Hugging Face](https://huggingface.co/stabilityai/sdxl-vae/tree/main) and replacing
245
+ the `CKPT_PATH` placeholder in [this line](configs/example_training/imagenet-f8_cond.yaml#81). The same is to be done
246
+ for the provided text-to-image configs.
247
+
248
+ ### Building New Diffusion Models
249
+
250
+ #### Conditioner
251
+
252
+ The `GeneralConditioner` is configured through the `conditioner_config`. Its only attribute is `emb_models`, a list of
253
+ different embedders (all inherited from `AbstractEmbModel`) that are used to condition the generative model.
254
+ All embedders should define whether or not they are trainable (`is_trainable`, default `False`), a classifier-free
255
+ guidance dropout rate is used (`ucg_rate`, default `0`), and an input key (`input_key`), for example, `txt` for
256
+ text-conditioning or `cls` for class-conditioning.
257
+ When computing conditionings, the embedder will get `batch[input_key]` as input.
258
+ We currently support two to four dimensional conditionings and conditionings of different embedders are concatenated
259
+ appropriately.
260
+ Note that the order of the embedders in the `conditioner_config` is important.
261
+
262
+ #### Network
263
+
264
+ The neural network is set through the `network_config`. This used to be called `unet_config`, which is not general
265
+ enough as we plan to experiment with transformer-based diffusion backbones.
266
+
267
+ #### Loss
268
+
269
+ The loss is configured through `loss_config`. For standard diffusion model training, you will have to
270
+ set `sigma_sampler_config`.
271
+
272
+ #### Sampler config
273
+
274
+ As discussed above, the sampler is independent of the model. In the `sampler_config`, we set the type of numerical
275
+ solver, number of steps, type of discretization, as well as, for example, guidance wrappers for classifier-free
276
+ guidance.
277
+
278
+ ### Dataset Handling
279
+
280
+ For large scale training we recommend using the data pipelines from
281
+ our [data pipelines](https://github.com/Stability-AI/datapipelines) project. The project is contained in the requirement
282
+ and automatically included when following the steps from the [Installation section](#installation).
283
+ Small map-style datasets should be defined here in the repository (e.g., MNIST, CIFAR-10, ...), and return a dict of
284
+ data keys/values,
285
+ e.g.,
286
+
287
+ ```python
288
+ example = {"jpg": x, # this is a tensor -1...1 chw
289
+ "txt": "a beautiful image"}
290
+ ```
291
+
292
+ where we expect images in -1...1, channel-first format.
assets/000.jpg ADDED
assets/001_with_eval.png ADDED

Git LFS Details

  • SHA256: 026fa14e30098729064a00fb7fcec41bb57dcddb33b36b548d553f601bc53634
  • Pointer size: 132 Bytes
  • Size of remote file: 4.19 MB
assets/test_image.png ADDED
assets/tile.gif ADDED

Git LFS Details

  • SHA256: 2340a9809e36fa9634633c7cc5fd256737c620ba47151726c85173512dc5c8ff
  • Pointer size: 133 Bytes
  • Size of remote file: 18.6 MB
data/DejaVuSans.ttf ADDED
Binary file (757 kB). View file
 
main.py ADDED
@@ -0,0 +1,943 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import datetime
3
+ import glob
4
+ import inspect
5
+ import os
6
+ import sys
7
+ from inspect import Parameter
8
+ from typing import Union
9
+
10
+ import numpy as np
11
+ import pytorch_lightning as pl
12
+ import torch
13
+ import torchvision
14
+ import wandb
15
+ from matplotlib import pyplot as plt
16
+ from natsort import natsorted
17
+ from omegaconf import OmegaConf
18
+ from packaging import version
19
+ from PIL import Image
20
+ from pytorch_lightning import seed_everything
21
+ from pytorch_lightning.callbacks import Callback
22
+ from pytorch_lightning.loggers import WandbLogger
23
+ from pytorch_lightning.trainer import Trainer
24
+ from pytorch_lightning.utilities import rank_zero_only
25
+
26
+ from sgm.util import exists, instantiate_from_config, isheatmap
27
+
28
+ MULTINODE_HACKS = True
29
+
30
+
31
+ def default_trainer_args():
32
+ argspec = dict(inspect.signature(Trainer.__init__).parameters)
33
+ argspec.pop("self")
34
+ default_args = {
35
+ param: argspec[param].default
36
+ for param in argspec
37
+ if argspec[param] != Parameter.empty
38
+ }
39
+ return default_args
40
+
41
+
42
+ def get_parser(**parser_kwargs):
43
+ def str2bool(v):
44
+ if isinstance(v, bool):
45
+ return v
46
+ if v.lower() in ("yes", "true", "t", "y", "1"):
47
+ return True
48
+ elif v.lower() in ("no", "false", "f", "n", "0"):
49
+ return False
50
+ else:
51
+ raise argparse.ArgumentTypeError("Boolean value expected.")
52
+
53
+ parser = argparse.ArgumentParser(**parser_kwargs)
54
+ parser.add_argument(
55
+ "-n",
56
+ "--name",
57
+ type=str,
58
+ const=True,
59
+ default="",
60
+ nargs="?",
61
+ help="postfix for logdir",
62
+ )
63
+ parser.add_argument(
64
+ "--no_date",
65
+ type=str2bool,
66
+ nargs="?",
67
+ const=True,
68
+ default=False,
69
+ help="if True, skip date generation for logdir and only use naming via opt.base or opt.name (+ opt.postfix, optionally)",
70
+ )
71
+ parser.add_argument(
72
+ "-r",
73
+ "--resume",
74
+ type=str,
75
+ const=True,
76
+ default="",
77
+ nargs="?",
78
+ help="resume from logdir or checkpoint in logdir",
79
+ )
80
+ parser.add_argument(
81
+ "-b",
82
+ "--base",
83
+ nargs="*",
84
+ metavar="base_config.yaml",
85
+ help="paths to base configs. Loaded from left-to-right. "
86
+ "Parameters can be overwritten or added with command-line options of the form `--key value`.",
87
+ default=list(),
88
+ )
89
+ parser.add_argument(
90
+ "-t",
91
+ "--train",
92
+ type=str2bool,
93
+ const=True,
94
+ default=True,
95
+ nargs="?",
96
+ help="train",
97
+ )
98
+ parser.add_argument(
99
+ "--no-test",
100
+ type=str2bool,
101
+ const=True,
102
+ default=False,
103
+ nargs="?",
104
+ help="disable test",
105
+ )
106
+ parser.add_argument(
107
+ "-p", "--project", help="name of new or path to existing project"
108
+ )
109
+ parser.add_argument(
110
+ "-d",
111
+ "--debug",
112
+ type=str2bool,
113
+ nargs="?",
114
+ const=True,
115
+ default=False,
116
+ help="enable post-mortem debugging",
117
+ )
118
+ parser.add_argument(
119
+ "-s",
120
+ "--seed",
121
+ type=int,
122
+ default=23,
123
+ help="seed for seed_everything",
124
+ )
125
+ parser.add_argument(
126
+ "-f",
127
+ "--postfix",
128
+ type=str,
129
+ default="",
130
+ help="post-postfix for default name",
131
+ )
132
+ parser.add_argument(
133
+ "--projectname",
134
+ type=str,
135
+ default="stablediffusion",
136
+ )
137
+ parser.add_argument(
138
+ "-l",
139
+ "--logdir",
140
+ type=str,
141
+ default="logs",
142
+ help="directory for logging dat shit",
143
+ )
144
+ parser.add_argument(
145
+ "--scale_lr",
146
+ type=str2bool,
147
+ nargs="?",
148
+ const=True,
149
+ default=False,
150
+ help="scale base-lr by ngpu * batch_size * n_accumulate",
151
+ )
152
+ parser.add_argument(
153
+ "--legacy_naming",
154
+ type=str2bool,
155
+ nargs="?",
156
+ const=True,
157
+ default=False,
158
+ help="name run based on config file name if true, else by whole path",
159
+ )
160
+ parser.add_argument(
161
+ "--enable_tf32",
162
+ type=str2bool,
163
+ nargs="?",
164
+ const=True,
165
+ default=False,
166
+ help="enables the TensorFloat32 format both for matmuls and cuDNN for pytorch 1.12",
167
+ )
168
+ parser.add_argument(
169
+ "--startup",
170
+ type=str,
171
+ default=None,
172
+ help="Startuptime from distributed script",
173
+ )
174
+ parser.add_argument(
175
+ "--wandb",
176
+ type=str2bool,
177
+ nargs="?",
178
+ const=True,
179
+ default=False, # TODO: later default to True
180
+ help="log to wandb",
181
+ )
182
+ parser.add_argument(
183
+ "--no_base_name",
184
+ type=str2bool,
185
+ nargs="?",
186
+ const=True,
187
+ default=False, # TODO: later default to True
188
+ help="log to wandb",
189
+ )
190
+ if version.parse(torch.__version__) >= version.parse("2.0.0"):
191
+ parser.add_argument(
192
+ "--resume_from_checkpoint",
193
+ type=str,
194
+ default=None,
195
+ help="single checkpoint file to resume from",
196
+ )
197
+ default_args = default_trainer_args()
198
+ for key in default_args:
199
+ parser.add_argument("--" + key, default=default_args[key])
200
+ return parser
201
+
202
+
203
+ def get_checkpoint_name(logdir):
204
+ ckpt = os.path.join(logdir, "checkpoints", "last**.ckpt")
205
+ ckpt = natsorted(glob.glob(ckpt))
206
+ print('available "last" checkpoints:')
207
+ print(ckpt)
208
+ if len(ckpt) > 1:
209
+ print("got most recent checkpoint")
210
+ ckpt = sorted(ckpt, key=lambda x: os.path.getmtime(x))[-1]
211
+ print(f"Most recent ckpt is {ckpt}")
212
+ with open(os.path.join(logdir, "most_recent_ckpt.txt"), "w") as f:
213
+ f.write(ckpt + "\n")
214
+ try:
215
+ version = int(ckpt.split("/")[-1].split("-v")[-1].split(".")[0])
216
+ except Exception as e:
217
+ print("version confusion but not bad")
218
+ print(e)
219
+ version = 1
220
+ # version = last_version + 1
221
+ else:
222
+ # in this case, we only have one "last.ckpt"
223
+ ckpt = ckpt[0]
224
+ version = 1
225
+ melk_ckpt_name = f"last-v{version}.ckpt"
226
+ print(f"Current melk ckpt name: {melk_ckpt_name}")
227
+ return ckpt, melk_ckpt_name
228
+
229
+
230
+ class SetupCallback(Callback):
231
+ def __init__(
232
+ self,
233
+ resume,
234
+ now,
235
+ logdir,
236
+ ckptdir,
237
+ cfgdir,
238
+ config,
239
+ lightning_config,
240
+ debug,
241
+ ckpt_name=None,
242
+ ):
243
+ super().__init__()
244
+ self.resume = resume
245
+ self.now = now
246
+ self.logdir = logdir
247
+ self.ckptdir = ckptdir
248
+ self.cfgdir = cfgdir
249
+ self.config = config
250
+ self.lightning_config = lightning_config
251
+ self.debug = debug
252
+ self.ckpt_name = ckpt_name
253
+
254
+ def on_exception(self, trainer: pl.Trainer, pl_module, exception):
255
+ if not self.debug and trainer.global_rank == 0:
256
+ print("Summoning checkpoint.")
257
+ if self.ckpt_name is None:
258
+ ckpt_path = os.path.join(self.ckptdir, "last.ckpt")
259
+ else:
260
+ ckpt_path = os.path.join(self.ckptdir, self.ckpt_name)
261
+ trainer.save_checkpoint(ckpt_path)
262
+
263
+ def on_fit_start(self, trainer, pl_module):
264
+ if trainer.global_rank == 0:
265
+ # Create logdirs and save configs
266
+ os.makedirs(self.logdir, exist_ok=True)
267
+ os.makedirs(self.ckptdir, exist_ok=True)
268
+ os.makedirs(self.cfgdir, exist_ok=True)
269
+
270
+ if "callbacks" in self.lightning_config:
271
+ if (
272
+ "metrics_over_trainsteps_checkpoint"
273
+ in self.lightning_config["callbacks"]
274
+ ):
275
+ os.makedirs(
276
+ os.path.join(self.ckptdir, "trainstep_checkpoints"),
277
+ exist_ok=True,
278
+ )
279
+ print("Project config")
280
+ print(OmegaConf.to_yaml(self.config))
281
+ if MULTINODE_HACKS:
282
+ import time
283
+
284
+ time.sleep(5)
285
+ OmegaConf.save(
286
+ self.config,
287
+ os.path.join(self.cfgdir, "{}-project.yaml".format(self.now)),
288
+ )
289
+
290
+ print("Lightning config")
291
+ print(OmegaConf.to_yaml(self.lightning_config))
292
+ OmegaConf.save(
293
+ OmegaConf.create({"lightning": self.lightning_config}),
294
+ os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now)),
295
+ )
296
+
297
+ else:
298
+ # ModelCheckpoint callback created log directory --- remove it
299
+ if not MULTINODE_HACKS and not self.resume and os.path.exists(self.logdir):
300
+ dst, name = os.path.split(self.logdir)
301
+ dst = os.path.join(dst, "child_runs", name)
302
+ os.makedirs(os.path.split(dst)[0], exist_ok=True)
303
+ try:
304
+ os.rename(self.logdir, dst)
305
+ except FileNotFoundError:
306
+ pass
307
+
308
+
309
+ class ImageLogger(Callback):
310
+ def __init__(
311
+ self,
312
+ batch_frequency,
313
+ max_images,
314
+ clamp=True,
315
+ increase_log_steps=True,
316
+ rescale=True,
317
+ disabled=False,
318
+ log_on_batch_idx=False,
319
+ log_first_step=False,
320
+ log_images_kwargs=None,
321
+ log_before_first_step=False,
322
+ enable_autocast=True,
323
+ ):
324
+ super().__init__()
325
+ self.enable_autocast = enable_autocast
326
+ self.rescale = rescale
327
+ self.batch_freq = batch_frequency
328
+ self.max_images = max_images
329
+ self.log_steps = [2**n for n in range(int(np.log2(self.batch_freq)) + 1)]
330
+ if not increase_log_steps:
331
+ self.log_steps = [self.batch_freq]
332
+ self.clamp = clamp
333
+ self.disabled = disabled
334
+ self.log_on_batch_idx = log_on_batch_idx
335
+ self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
336
+ self.log_first_step = log_first_step
337
+ self.log_before_first_step = log_before_first_step
338
+
339
+ @rank_zero_only
340
+ def log_local(
341
+ self,
342
+ save_dir,
343
+ split,
344
+ images,
345
+ global_step,
346
+ current_epoch,
347
+ batch_idx,
348
+ pl_module: Union[None, pl.LightningModule] = None,
349
+ ):
350
+ root = os.path.join(save_dir, "images", split)
351
+ for k in images:
352
+ if isheatmap(images[k]):
353
+ fig, ax = plt.subplots()
354
+ ax = ax.matshow(
355
+ images[k].cpu().numpy(), cmap="hot", interpolation="lanczos"
356
+ )
357
+ plt.colorbar(ax)
358
+ plt.axis("off")
359
+
360
+ filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
361
+ k, global_step, current_epoch, batch_idx
362
+ )
363
+ os.makedirs(root, exist_ok=True)
364
+ path = os.path.join(root, filename)
365
+ plt.savefig(path)
366
+ plt.close()
367
+ # TODO: support wandb
368
+ else:
369
+ grid = torchvision.utils.make_grid(images[k], nrow=4)
370
+ if self.rescale:
371
+ grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
372
+ grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
373
+ grid = grid.numpy()
374
+ grid = (grid * 255).astype(np.uint8)
375
+ filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
376
+ k, global_step, current_epoch, batch_idx
377
+ )
378
+ path = os.path.join(root, filename)
379
+ os.makedirs(os.path.split(path)[0], exist_ok=True)
380
+ img = Image.fromarray(grid)
381
+ img.save(path)
382
+ if exists(pl_module):
383
+ assert isinstance(
384
+ pl_module.logger, WandbLogger
385
+ ), "logger_log_image only supports WandbLogger currently"
386
+ pl_module.logger.log_image(
387
+ key=f"{split}/{k}",
388
+ images=[
389
+ img,
390
+ ],
391
+ step=pl_module.global_step,
392
+ )
393
+
394
+ @rank_zero_only
395
+ def log_img(self, pl_module, batch, batch_idx, split="train"):
396
+ check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
397
+ if (
398
+ self.check_frequency(check_idx)
399
+ and hasattr(pl_module, "log_images") # batch_idx % self.batch_freq == 0
400
+ and callable(pl_module.log_images)
401
+ and
402
+ # batch_idx > 5 and
403
+ self.max_images > 0
404
+ ):
405
+ logger = type(pl_module.logger)
406
+ is_train = pl_module.training
407
+ if is_train:
408
+ pl_module.eval()
409
+
410
+ gpu_autocast_kwargs = {
411
+ "enabled": self.enable_autocast, # torch.is_autocast_enabled(),
412
+ "dtype": torch.get_autocast_gpu_dtype(),
413
+ "cache_enabled": torch.is_autocast_cache_enabled(),
414
+ }
415
+ with torch.no_grad(), torch.cuda.amp.autocast(**gpu_autocast_kwargs):
416
+ images = pl_module.log_images(
417
+ batch, split=split, **self.log_images_kwargs
418
+ )
419
+
420
+ for k in images:
421
+ N = min(images[k].shape[0], self.max_images)
422
+ if not isheatmap(images[k]):
423
+ images[k] = images[k][:N]
424
+ if isinstance(images[k], torch.Tensor):
425
+ images[k] = images[k].detach().float().cpu()
426
+ if self.clamp and not isheatmap(images[k]):
427
+ images[k] = torch.clamp(images[k], -1.0, 1.0)
428
+
429
+ self.log_local(
430
+ pl_module.logger.save_dir,
431
+ split,
432
+ images,
433
+ pl_module.global_step,
434
+ pl_module.current_epoch,
435
+ batch_idx,
436
+ pl_module=pl_module
437
+ if isinstance(pl_module.logger, WandbLogger)
438
+ else None,
439
+ )
440
+
441
+ if is_train:
442
+ pl_module.train()
443
+
444
+ def check_frequency(self, check_idx):
445
+ if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and (
446
+ check_idx > 0 or self.log_first_step
447
+ ):
448
+ try:
449
+ self.log_steps.pop(0)
450
+ except IndexError as e:
451
+ print(e)
452
+ pass
453
+ return True
454
+ return False
455
+
456
+ @rank_zero_only
457
+ def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
458
+ if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
459
+ self.log_img(pl_module, batch, batch_idx, split="train")
460
+
461
+ @rank_zero_only
462
+ def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
463
+ if self.log_before_first_step and pl_module.global_step == 0:
464
+ print(f"{self.__class__.__name__}: logging before training")
465
+ self.log_img(pl_module, batch, batch_idx, split="train")
466
+
467
+ @rank_zero_only
468
+ def on_validation_batch_end(
469
+ self, trainer, pl_module, outputs, batch, batch_idx, *args, **kwargs
470
+ ):
471
+ if not self.disabled and pl_module.global_step > 0:
472
+ self.log_img(pl_module, batch, batch_idx, split="val")
473
+ if hasattr(pl_module, "calibrate_grad_norm"):
474
+ if (
475
+ pl_module.calibrate_grad_norm and batch_idx % 25 == 0
476
+ ) and batch_idx > 0:
477
+ self.log_gradients(trainer, pl_module, batch_idx=batch_idx)
478
+
479
+
480
+ @rank_zero_only
481
+ def init_wandb(save_dir, opt, config, group_name, name_str):
482
+ print(f"setting WANDB_DIR to {save_dir}")
483
+ os.makedirs(save_dir, exist_ok=True)
484
+
485
+ os.environ["WANDB_DIR"] = save_dir
486
+ if opt.debug:
487
+ wandb.init(project=opt.projectname, mode="offline", group=group_name)
488
+ else:
489
+ wandb.init(
490
+ project=opt.projectname,
491
+ config=config,
492
+ settings=wandb.Settings(code_dir="./sgm"),
493
+ group=group_name,
494
+ name=name_str,
495
+ )
496
+
497
+
498
+ if __name__ == "__main__":
499
+ # custom parser to specify config files, train, test and debug mode,
500
+ # postfix, resume.
501
+ # `--key value` arguments are interpreted as arguments to the trainer.
502
+ # `nested.key=value` arguments are interpreted as config parameters.
503
+ # configs are merged from left-to-right followed by command line parameters.
504
+
505
+ # model:
506
+ # base_learning_rate: float
507
+ # target: path to lightning module
508
+ # params:
509
+ # key: value
510
+ # data:
511
+ # target: main.DataModuleFromConfig
512
+ # params:
513
+ # batch_size: int
514
+ # wrap: bool
515
+ # train:
516
+ # target: path to train dataset
517
+ # params:
518
+ # key: value
519
+ # validation:
520
+ # target: path to validation dataset
521
+ # params:
522
+ # key: value
523
+ # test:
524
+ # target: path to test dataset
525
+ # params:
526
+ # key: value
527
+ # lightning: (optional, has sane defaults and can be specified on cmdline)
528
+ # trainer:
529
+ # additional arguments to trainer
530
+ # logger:
531
+ # logger to instantiate
532
+ # modelcheckpoint:
533
+ # modelcheckpoint to instantiate
534
+ # callbacks:
535
+ # callback1:
536
+ # target: importpath
537
+ # params:
538
+ # key: value
539
+
540
+ now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
541
+
542
+ # add cwd for convenience and to make classes in this file available when
543
+ # running as `python main.py`
544
+ # (in particular `main.DataModuleFromConfig`)
545
+ sys.path.append(os.getcwd())
546
+
547
+ parser = get_parser()
548
+
549
+ opt, unknown = parser.parse_known_args()
550
+
551
+ if opt.name and opt.resume:
552
+ raise ValueError(
553
+ "-n/--name and -r/--resume cannot be specified both."
554
+ "If you want to resume training in a new log folder, "
555
+ "use -n/--name in combination with --resume_from_checkpoint"
556
+ )
557
+ melk_ckpt_name = None
558
+ name = None
559
+ if opt.resume:
560
+ if not os.path.exists(opt.resume):
561
+ raise ValueError("Cannot find {}".format(opt.resume))
562
+ if os.path.isfile(opt.resume):
563
+ paths = opt.resume.split("/")
564
+ # idx = len(paths)-paths[::-1].index("logs")+1
565
+ # logdir = "/".join(paths[:idx])
566
+ logdir = "/".join(paths[:-2])
567
+ ckpt = opt.resume
568
+ _, melk_ckpt_name = get_checkpoint_name(logdir)
569
+ else:
570
+ assert os.path.isdir(opt.resume), opt.resume
571
+ logdir = opt.resume.rstrip("/")
572
+ ckpt, melk_ckpt_name = get_checkpoint_name(logdir)
573
+
574
+ print("#" * 100)
575
+ print(f'Resuming from checkpoint "{ckpt}"')
576
+ print("#" * 100)
577
+
578
+ opt.resume_from_checkpoint = ckpt
579
+ base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml")))
580
+ opt.base = base_configs + opt.base
581
+ _tmp = logdir.split("/")
582
+ nowname = _tmp[-1]
583
+ else:
584
+ if opt.name:
585
+ name = "_" + opt.name
586
+ elif opt.base:
587
+ if opt.no_base_name:
588
+ name = ""
589
+ else:
590
+ if opt.legacy_naming:
591
+ cfg_fname = os.path.split(opt.base[0])[-1]
592
+ cfg_name = os.path.splitext(cfg_fname)[0]
593
+ else:
594
+ assert "configs" in os.path.split(opt.base[0])[0], os.path.split(
595
+ opt.base[0]
596
+ )[0]
597
+ cfg_path = os.path.split(opt.base[0])[0].split(os.sep)[
598
+ os.path.split(opt.base[0])[0].split(os.sep).index("configs")
599
+ + 1 :
600
+ ] # cut away the first one (we assert all configs are in "configs")
601
+ cfg_name = os.path.splitext(os.path.split(opt.base[0])[-1])[0]
602
+ cfg_name = "-".join(cfg_path) + f"-{cfg_name}"
603
+ name = "_" + cfg_name
604
+ else:
605
+ name = ""
606
+ if not opt.no_date:
607
+ nowname = now + name + opt.postfix
608
+ else:
609
+ nowname = name + opt.postfix
610
+ if nowname.startswith("_"):
611
+ nowname = nowname[1:]
612
+ logdir = os.path.join(opt.logdir, nowname)
613
+ print(f"LOGDIR: {logdir}")
614
+
615
+ ckptdir = os.path.join(logdir, "checkpoints")
616
+ cfgdir = os.path.join(logdir, "configs")
617
+ seed_everything(opt.seed, workers=True)
618
+
619
+ # move before model init, in case a torch.compile(...) is called somewhere
620
+ if opt.enable_tf32:
621
+ # pt_version = version.parse(torch.__version__)
622
+ torch.backends.cuda.matmul.allow_tf32 = True
623
+ torch.backends.cudnn.allow_tf32 = True
624
+ print(f"Enabling TF32 for PyTorch {torch.__version__}")
625
+ else:
626
+ print(f"Using default TF32 settings for PyTorch {torch.__version__}:")
627
+ print(
628
+ f"torch.backends.cuda.matmul.allow_tf32={torch.backends.cuda.matmul.allow_tf32}"
629
+ )
630
+ print(f"torch.backends.cudnn.allow_tf32={torch.backends.cudnn.allow_tf32}")
631
+
632
+ try:
633
+ # init and save configs
634
+ configs = [OmegaConf.load(cfg) for cfg in opt.base]
635
+ cli = OmegaConf.from_dotlist(unknown)
636
+ config = OmegaConf.merge(*configs, cli)
637
+ lightning_config = config.pop("lightning", OmegaConf.create())
638
+ # merge trainer cli with config
639
+ trainer_config = lightning_config.get("trainer", OmegaConf.create())
640
+
641
+ # default to gpu
642
+ trainer_config["accelerator"] = "gpu"
643
+ #
644
+ standard_args = default_trainer_args()
645
+ for k in standard_args:
646
+ if getattr(opt, k) != standard_args[k]:
647
+ trainer_config[k] = getattr(opt, k)
648
+
649
+ ckpt_resume_path = opt.resume_from_checkpoint
650
+
651
+ if not "devices" in trainer_config and trainer_config["accelerator"] != "gpu":
652
+ del trainer_config["accelerator"]
653
+ cpu = True
654
+ else:
655
+ gpuinfo = trainer_config["devices"]
656
+ print(f"Running on GPUs {gpuinfo}")
657
+ cpu = False
658
+ trainer_opt = argparse.Namespace(**trainer_config)
659
+ lightning_config.trainer = trainer_config
660
+
661
+ # model
662
+ model = instantiate_from_config(config.model)
663
+
664
+ # trainer and callbacks
665
+ trainer_kwargs = dict()
666
+
667
+ # default logger configs
668
+ default_logger_cfgs = {
669
+ "wandb": {
670
+ "target": "pytorch_lightning.loggers.WandbLogger",
671
+ "params": {
672
+ "name": nowname,
673
+ # "save_dir": logdir,
674
+ "offline": opt.debug,
675
+ "id": nowname,
676
+ "project": opt.projectname,
677
+ "log_model": False,
678
+ # "dir": logdir,
679
+ },
680
+ },
681
+ "csv": {
682
+ "target": "pytorch_lightning.loggers.CSVLogger",
683
+ "params": {
684
+ "name": "testtube", # hack for sbord fanatics
685
+ "save_dir": logdir,
686
+ },
687
+ },
688
+ }
689
+ default_logger_cfg = default_logger_cfgs["wandb" if opt.wandb else "csv"]
690
+ if opt.wandb:
691
+ # TODO change once leaving "swiffer" config directory
692
+ try:
693
+ group_name = nowname.split(now)[-1].split("-")[1]
694
+ except:
695
+ group_name = nowname
696
+ default_logger_cfg["params"]["group"] = group_name
697
+ init_wandb(
698
+ os.path.join(os.getcwd(), logdir),
699
+ opt=opt,
700
+ group_name=group_name,
701
+ config=config,
702
+ name_str=nowname,
703
+ )
704
+ if "logger" in lightning_config:
705
+ logger_cfg = lightning_config.logger
706
+ else:
707
+ logger_cfg = OmegaConf.create()
708
+ logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg)
709
+ trainer_kwargs["logger"] = instantiate_from_config(logger_cfg)
710
+
711
+ # modelcheckpoint - use TrainResult/EvalResult(checkpoint_on=metric) to
712
+ # specify which metric is used to determine best models
713
+ default_modelckpt_cfg = {
714
+ "target": "pytorch_lightning.callbacks.ModelCheckpoint",
715
+ "params": {
716
+ "dirpath": ckptdir,
717
+ "filename": "{epoch:06}",
718
+ "verbose": True,
719
+ "save_last": True,
720
+ },
721
+ }
722
+ if hasattr(model, "monitor"):
723
+ print(f"Monitoring {model.monitor} as checkpoint metric.")
724
+ default_modelckpt_cfg["params"]["monitor"] = model.monitor
725
+ default_modelckpt_cfg["params"]["save_top_k"] = 3
726
+
727
+ if "modelcheckpoint" in lightning_config:
728
+ modelckpt_cfg = lightning_config.modelcheckpoint
729
+ else:
730
+ modelckpt_cfg = OmegaConf.create()
731
+ modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
732
+ print(f"Merged modelckpt-cfg: \n{modelckpt_cfg}")
733
+
734
+ # https://pytorch-lightning.readthedocs.io/en/stable/extensions/strategy.html
735
+ # default to ddp if not further specified
736
+ default_strategy_config = {"target": "pytorch_lightning.strategies.DDPStrategy"}
737
+
738
+ if "strategy" in lightning_config:
739
+ strategy_cfg = lightning_config.strategy
740
+ else:
741
+ strategy_cfg = OmegaConf.create()
742
+ default_strategy_config["params"] = {
743
+ "find_unused_parameters": False,
744
+ # "static_graph": True,
745
+ # "ddp_comm_hook": default.fp16_compress_hook # TODO: experiment with this, also for DDPSharded
746
+ }
747
+ strategy_cfg = OmegaConf.merge(default_strategy_config, strategy_cfg)
748
+ print(
749
+ f"strategy config: \n ++++++++++++++ \n {strategy_cfg} \n ++++++++++++++ "
750
+ )
751
+ trainer_kwargs["strategy"] = instantiate_from_config(strategy_cfg)
752
+
753
+ # add callback which sets up log directory
754
+ default_callbacks_cfg = {
755
+ "setup_callback": {
756
+ "target": "main.SetupCallback",
757
+ "params": {
758
+ "resume": opt.resume,
759
+ "now": now,
760
+ "logdir": logdir,
761
+ "ckptdir": ckptdir,
762
+ "cfgdir": cfgdir,
763
+ "config": config,
764
+ "lightning_config": lightning_config,
765
+ "debug": opt.debug,
766
+ "ckpt_name": melk_ckpt_name,
767
+ },
768
+ },
769
+ "image_logger": {
770
+ "target": "main.ImageLogger",
771
+ "params": {"batch_frequency": 1000, "max_images": 4, "clamp": True},
772
+ },
773
+ "learning_rate_logger": {
774
+ "target": "pytorch_lightning.callbacks.LearningRateMonitor",
775
+ "params": {
776
+ "logging_interval": "step",
777
+ # "log_momentum": True
778
+ },
779
+ },
780
+ }
781
+ if version.parse(pl.__version__) >= version.parse("1.4.0"):
782
+ default_callbacks_cfg.update({"checkpoint_callback": modelckpt_cfg})
783
+
784
+ if "callbacks" in lightning_config:
785
+ callbacks_cfg = lightning_config.callbacks
786
+ else:
787
+ callbacks_cfg = OmegaConf.create()
788
+
789
+ if "metrics_over_trainsteps_checkpoint" in callbacks_cfg:
790
+ print(
791
+ "Caution: Saving checkpoints every n train steps without deleting. This might require some free space."
792
+ )
793
+ default_metrics_over_trainsteps_ckpt_dict = {
794
+ "metrics_over_trainsteps_checkpoint": {
795
+ "target": "pytorch_lightning.callbacks.ModelCheckpoint",
796
+ "params": {
797
+ "dirpath": os.path.join(ckptdir, "trainstep_checkpoints"),
798
+ "filename": "{epoch:06}-{step:09}",
799
+ "verbose": True,
800
+ "save_top_k": -1,
801
+ "every_n_train_steps": 10000,
802
+ "save_weights_only": True,
803
+ },
804
+ }
805
+ }
806
+ default_callbacks_cfg.update(default_metrics_over_trainsteps_ckpt_dict)
807
+
808
+ callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
809
+ if "ignore_keys_callback" in callbacks_cfg and ckpt_resume_path is not None:
810
+ callbacks_cfg.ignore_keys_callback.params["ckpt_path"] = ckpt_resume_path
811
+ elif "ignore_keys_callback" in callbacks_cfg:
812
+ del callbacks_cfg["ignore_keys_callback"]
813
+
814
+ trainer_kwargs["callbacks"] = [
815
+ instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg
816
+ ]
817
+ if not "plugins" in trainer_kwargs:
818
+ trainer_kwargs["plugins"] = list()
819
+
820
+ # cmd line trainer args (which are in trainer_opt) have always priority over config-trainer-args (which are in trainer_kwargs)
821
+ trainer_opt = vars(trainer_opt)
822
+ trainer_kwargs = {
823
+ key: val for key, val in trainer_kwargs.items() if key not in trainer_opt
824
+ }
825
+ trainer = Trainer(**trainer_opt, **trainer_kwargs)
826
+
827
+ trainer.logdir = logdir ###
828
+
829
+ # data
830
+ data = instantiate_from_config(config.data)
831
+ # NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
832
+ # calling these ourselves should not be necessary but it is.
833
+ # lightning still takes care of proper multiprocessing though
834
+ data.prepare_data()
835
+ # data.setup()
836
+ print("#### Data #####")
837
+ try:
838
+ for k in data.datasets:
839
+ print(
840
+ f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}"
841
+ )
842
+ except:
843
+ print("datasets not yet initialized.")
844
+
845
+ # configure learning rate
846
+ if "batch_size" in config.data.params:
847
+ bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
848
+ else:
849
+ bs, base_lr = (
850
+ config.data.params.train.loader.batch_size,
851
+ config.model.base_learning_rate,
852
+ )
853
+ if not cpu:
854
+ ngpu = len(lightning_config.trainer.devices.strip(",").split(","))
855
+ else:
856
+ ngpu = 1
857
+ if "accumulate_grad_batches" in lightning_config.trainer:
858
+ accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches
859
+ else:
860
+ accumulate_grad_batches = 1
861
+ print(f"accumulate_grad_batches = {accumulate_grad_batches}")
862
+ lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
863
+ if opt.scale_lr:
864
+ model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr
865
+ print(
866
+ "Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)".format(
867
+ model.learning_rate, accumulate_grad_batches, ngpu, bs, base_lr
868
+ )
869
+ )
870
+ else:
871
+ model.learning_rate = base_lr
872
+ print("++++ NOT USING LR SCALING ++++")
873
+ print(f"Setting learning rate to {model.learning_rate:.2e}")
874
+
875
+ # allow checkpointing via USR1
876
+ def melk(*args, **kwargs):
877
+ # run all checkpoint hooks
878
+ if trainer.global_rank == 0:
879
+ print("Summoning checkpoint.")
880
+ if melk_ckpt_name is None:
881
+ ckpt_path = os.path.join(ckptdir, "last.ckpt")
882
+ else:
883
+ ckpt_path = os.path.join(ckptdir, melk_ckpt_name)
884
+ trainer.save_checkpoint(ckpt_path)
885
+
886
+ def divein(*args, **kwargs):
887
+ if trainer.global_rank == 0:
888
+ import pudb
889
+
890
+ pudb.set_trace()
891
+
892
+ import signal
893
+
894
+ signal.signal(signal.SIGUSR1, melk)
895
+ signal.signal(signal.SIGUSR2, divein)
896
+
897
+ # run
898
+ if opt.train:
899
+ try:
900
+ trainer.fit(model, data, ckpt_path=ckpt_resume_path)
901
+ except Exception:
902
+ if not opt.debug:
903
+ melk()
904
+ raise
905
+ if not opt.no_test and not trainer.interrupted:
906
+ trainer.test(model, data)
907
+ except RuntimeError as err:
908
+ if MULTINODE_HACKS:
909
+ import datetime
910
+ import os
911
+ import socket
912
+
913
+ import requests
914
+
915
+ device = os.environ.get("CUDA_VISIBLE_DEVICES", "?")
916
+ hostname = socket.gethostname()
917
+ ts = datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")
918
+ resp = requests.get("http://169.254.169.254/latest/meta-data/instance-id")
919
+ print(
920
+ f"ERROR at {ts} on {hostname}/{resp.text} (CUDA_VISIBLE_DEVICES={device}): {type(err).__name__}: {err}",
921
+ flush=True,
922
+ )
923
+ raise err
924
+ except Exception:
925
+ if opt.debug and trainer.global_rank == 0:
926
+ try:
927
+ import pudb as debugger
928
+ except ImportError:
929
+ import pdb as debugger
930
+ debugger.post_mortem()
931
+ raise
932
+ finally:
933
+ # move newly created debug project to debug_runs
934
+ if opt.debug and not opt.resume and trainer.global_rank == 0:
935
+ dst, name = os.path.split(logdir)
936
+ dst = os.path.join(dst, "debug_runs", name)
937
+ os.makedirs(os.path.split(dst)[0], exist_ok=True)
938
+ os.rename(logdir, dst)
939
+
940
+ if opt.wandb:
941
+ wandb.finish()
942
+ # if trainer.global_rank == 0:
943
+ # print(trainer.profiler.summary())
model_licenses/LICENSE-SDV ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ STABLE VIDEO DIFFUSION NON-COMMERCIAL COMMUNITY LICENSE AGREEMENT
2
+ Dated: November 21, 2023
3
+
4
+ β€œAUP” means the Stability AI Acceptable Use Policy available at https://stability.ai/use-policy, as may be updated from time to time.
5
+
6
+ "Agreement" means the terms and conditions for use, reproduction, distribution and modification of the Software Products set forth herein.
7
+ "Derivative Work(s)” means (a) any derivative work of the Software Products as recognized by U.S. copyright laws and (b) any modifications to a Model, and any other model created which is based on or derived from the Model or the Model’s output. For clarity, Derivative Works do not include the output of any Model.
8
+ β€œDocumentation” means any specifications, manuals, documentation, and other written information provided by Stability AI related to the Software.
9
+
10
+ "Licensee" or "you" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity's behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.
11
+
12
+ "Stability AI" or "we" means Stability AI Ltd.
13
+
14
+ "Software" means, collectively, Stability AI’s proprietary StableCode made available under this Agreement.
15
+
16
+ β€œSoftware Products” means Software and Documentation.
17
+
18
+ By using or distributing any portion or element of the Software Products, you agree to be bound by this Agreement.
19
+
20
+
21
+
22
+ License Rights and Redistribution.
23
+ Subject to your compliance with this Agreement, the AUP (which is hereby incorporated herein by reference), and the Documentation, Stability AI grants you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty free and limited license under Stability AI’s intellectual property or other rights owned by Stability AI embodied in the Software Products to reproduce, distribute, and create Derivative Works of the Software Products for purposes other than commercial or production use.
24
+ b. If you distribute or make the Software Products, or any Derivative Works thereof, available to a third party, the Software Products, Derivative Works, or any portion thereof, respectively, will remain subject to this Agreement and you must (i) provide a copy of this Agreement to such third party, and (ii) retain the following attribution notice within a "Notice" text file distributed as a part of such copies: "Stable Video Diffusion is licensed under the Stable Video Diffusion Research License, Copyright (c) Stability AI Ltd. All Rights Reserved.” If you create a Derivative Work of a Software Product, you may add your own attribution notices to the Notice file included with the Software Product, provided that you clearly indicate which attributions apply to the Software Product and you must state in the NOTICE file that you changed the Software Product and how it was modified.
25
+ 2. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE SOFTWARE PRODUCTS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE SOFTWARE PRODUCTS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE SOFTWARE PRODUCTS AND ANY OUTPUT AND RESULTS.
26
+ 3. Limitation of Liability. IN NO EVENT WILL STABILITY AI OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF STABILITY AI OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
27
+ 3. Intellectual Property.
28
+ a. No trademark licenses are granted under this Agreement, and in connection with the Software Products, neither Stability AI nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Software Products.
29
+ Subject to Stability AI’s ownership of the Software Products and Derivative Works made by or for Stability AI, with respect to any Derivative Works that are made by you, as between you and Stability AI, you are and will be the owner of such Derivative Works.
30
+ If you institute litigation or other proceedings against Stability AI (including a cross-claim or counterclaim in a lawsuit) alleging that the Software Products or associated outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Stability AI from and against any claim by any third party arising out of or related to your use or distribution of the Software Products in violation of this Agreement.
31
+ 4. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Software Products and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Stability AI may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Software Products. Sections 2-4 shall survive the termination of this Agreement.
model_licenses/LICENSE-SDXL0.9 ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ SDXL 0.9 RESEARCH LICENSE AGREEMENT
2
+ Copyright (c) Stability AI Ltd.
3
+ This License Agreement (as may be amended in accordance with this License Agreement, β€œLicense”), between you, or your employer or other entity (if you are entering into this agreement on behalf of your employer or other entity) (β€œLicensee” or β€œyou”) and Stability AI Ltd. (β€œStability AI” or β€œwe”) applies to your use of any computer program, algorithm, source code, object code, or software that is made available by Stability AI under this License (β€œSoftware”) and any specifications, manuals, documentation, and other written information provided by Stability AI related to the Software (β€œDocumentation”).
4
+ By clicking β€œI Accept” below or by using the Software, you agree to the terms of this License. If you do not agree to this License, then you do not have any rights to use the Software or Documentation (collectively, the β€œSoftware Products”), and you must immediately cease using the Software Products. If you are agreeing to be bound by the terms of this License on behalf of your employer or other entity, you represent and warrant to Stability AI that you have full legal authority to bind your employer or such entity to this License. If you do not have the requisite authority, you may not accept the License or access the Software Products on behalf of your employer or other entity.
5
+ 1. LICENSE GRANT
6
+
7
+ a. Subject to your compliance with the Documentation and Sections 2, 3, and 5, Stability AI grants you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty free and limited license under Stability AI’s copyright interests to reproduce, distribute, and create derivative works of the Software solely for your non-commercial research purposes. The foregoing license is personal to you, and you may not assign or sublicense this License or any other rights or obligations under this License without Stability AI’s prior written consent; any such assignment or sublicense will be void and will automatically and immediately terminate this License.
8
+
9
+ b. You may make a reasonable number of copies of the Documentation solely for use in connection with the license to the Software granted above.
10
+
11
+ c. The grant of rights expressly set forth in this Section 1 (License Grant) are the complete grant of rights to you in the Software Products, and no other licenses are granted, whether by waiver, estoppel, implication, equity or otherwise. Stability AI and its licensors reserve all rights not expressly granted by this License.
12
+
13
+
14
+ 2. RESTRICTIONS
15
+
16
+ You will not, and will not permit, assist or cause any third party to:
17
+
18
+ a. use, modify, copy, reproduce, create derivative works of, or distribute the Software Products (or any derivative works thereof, works incorporating the Software Products, or any data produced by the Software), in whole or in part, for (i) any commercial or production purposes, (ii) military purposes or in the service of nuclear technology, (iii) purposes of surveillance, including any research or development relating to surveillance, (iv) biometric processing, (v) in any manner that infringes, misappropriates, or otherwise violates any third-party rights, or (vi) in any manner that violates any applicable law and violating any privacy or security laws, rules, regulations, directives, or governmental requirements (including the General Data Privacy Regulation (Regulation (EU) 2016/679), the California Consumer Privacy Act, and any and all laws governing the processing of biometric information), as well as all amendments and successor laws to any of the foregoing;
19
+
20
+ b. alter or remove copyright and other proprietary notices which appear on or in the Software Products;
21
+
22
+ c. utilize any equipment, device, software, or other means to circumvent or remove any security or protection used by Stability AI in connection with the Software, or to circumvent or remove any usage restrictions, or to enable functionality disabled by Stability AI; or
23
+
24
+ d. offer or impose any terms on the Software Products that alter, restrict, or are inconsistent with the terms of this License.
25
+
26
+ e. 1) violate any applicable U.S. and non-U.S. export control and trade sanctions laws (β€œExport Laws”); 2) directly or indirectly export, re-export, provide, or otherwise transfer Software Products: (a) to any individual, entity, or country prohibited by Export Laws; (b) to anyone on U.S. or non-U.S. government restricted parties lists; or (c) for any purpose prohibited by Export Laws, including nuclear, chemical or biological weapons, or missile technology applications; 3) use or download Software Products if you or they are: (a) located in a comprehensively sanctioned jurisdiction, (b) currently listed on any U.S. or non-U.S. restricted parties list, or (c) for any purpose prohibited by Export Laws; and (4) will not disguise your location through IP proxying or other methods.
27
+
28
+
29
+ 3. ATTRIBUTION
30
+
31
+ Together with any copies of the Software Products (as well as derivative works thereof or works incorporating the Software Products) that you distribute, you must provide (i) a copy of this License, and (ii) the following attribution notice: β€œSDXL 0.9 is licensed under the SDXL Research License, Copyright (c) Stability AI Ltd. All Rights Reserved.”
32
+
33
+
34
+ 4. DISCLAIMERS
35
+
36
+ THE SOFTWARE PRODUCTS ARE PROVIDED β€œAS IS” AND β€œWITH ALL FAULTS” WITH NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. STABILITY AIEXPRESSLY DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS OR IMPLIED, WHETHER BY STATUTE, CUSTOM, USAGE OR OTHERWISE AS TO ANY MATTERS RELATED TO THE SOFTWARE PRODUCTS, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, SATISFACTORY QUALITY, OR NON-INFRINGEMENT. STABILITY AI MAKES NO WARRANTIES OR REPRESENTATIONS THAT THE SOFTWARE PRODUCTS WILL BE ERROR FREE OR FREE OF VIRUSES OR OTHER HARMFUL COMPONENTS, OR PRODUCE ANY PARTICULAR RESULTS.
37
+
38
+
39
+ 5. LIMITATION OF LIABILITY
40
+
41
+ TO THE FULLEST EXTENT PERMITTED BY LAW, IN NO EVENT WILL STABILITY AI BE LIABLE TO YOU (A) UNDER ANY THEORY OF LIABILITY, WHETHER BASED IN CONTRACT, TORT, NEGLIGENCE, STRICT LIABILITY, WARRANTY, OR OTHERWISE UNDER THIS LICENSE, OR (B) FOR ANY INDIRECT, CONSEQUENTIAL, EXEMPLARY, INCIDENTAL, PUNITIVE OR SPECIAL DAMAGES OR LOST PROFITS, EVEN IF STABILITY AI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE SOFTWARE PRODUCTS, THEIR CONSTITUENT COMPONENTS, AND ANY OUTPUT (COLLECTIVELY, β€œSOFTWARE MATERIALS”) ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATION OR SITUATION WHERE FAILURE OR FAULT OF THE SOFTWARE MATERIALS COULD REASONABLY BE ANTICIPATED TO LEAD TO SERIOUS INJURY OF ANY PERSON, INCLUDING POTENTIAL DISCRIMINATION OR VIOLATION OF AN INDIVIDUAL’S PRIVACY RIGHTS, OR TO SEVERE PHYSICAL, PROPERTY, OR ENVIRONMENTAL DAMAGE (EACH, A β€œHIGH-RISK USE”). IF YOU ELECT TO USE ANY OF THE SOFTWARE MATERIALS FOR A HIGH-RISK USE, YOU DO SO AT YOUR OWN RISK. YOU AGREE TO DESIGN AND IMPLEMENT APPROPRIATE DECISION-MAKING AND RISK-MITIGATION PROCEDURES AND POLICIES IN CONNECTION WITH A HIGH-RISK USE SUCH THAT EVEN IF THERE IS A FAILURE OR FAULT IN ANY OF THE SOFTWARE MATERIALS, THE SAFETY OF PERSONS OR PROPERTY AFFECTED BY THE ACTIVITY STAYS AT A LEVEL THAT IS REASONABLE, APPROPRIATE, AND LAWFUL FOR THE FIELD OF THE HIGH-RISK USE.
42
+
43
+
44
+ 6. INDEMNIFICATION
45
+
46
+ You will indemnify, defend and hold harmless Stability AI and our subsidiaries and affiliates, and each of our respective shareholders, directors, officers, employees, agents, successors, and assigns (collectively, the β€œStability AI Parties”) from and against any losses, liabilities, damages, fines, penalties, and expenses (including reasonable attorneys’ fees) incurred by any Stability AI Party in connection with any claim, demand, allegation, lawsuit, proceeding, or investigation (collectively, β€œClaims”) arising out of or related to: (a) your access to or use of the Software Products (as well as any results or data generated from such access or use), including any High-Risk Use (defined below); (b) your violation of this License; or (c) your violation, misappropriation or infringement of any rights of another (including intellectual property or other proprietary rights and privacy rights). You will promptly notify the Stability AI Parties of any such Claims, and cooperate with Stability AI Parties in defending such Claims. You will also grant the Stability AI Parties sole control of the defense or settlement, at Stability AI’s sole option, of any Claims. This indemnity is in addition to, and not in lieu of, any other indemnities or remedies set forth in a written agreement between you and Stability AI or the other Stability AI Parties.
47
+
48
+
49
+ 7. TERMINATION; SURVIVAL
50
+
51
+ a. This License will automatically terminate upon any breach by you of the terms of this License.
52
+
53
+ b. We may terminate this License, in whole or in part, at any time upon notice (including electronic) to you.
54
+
55
+ c. The following sections survive termination of this License: 2 (Restrictions), 3 (Attribution), 4 (Disclaimers), 5 (Limitation on Liability), 6 (Indemnification) 7 (Termination; Survival), 8 (Third Party Materials), 9 (Trademarks), 10 (Applicable Law; Dispute Resolution), and 11 (Miscellaneous).
56
+
57
+
58
+ 8. THIRD PARTY MATERIALS
59
+
60
+ The Software Products may contain third-party software or other components (including free and open source software) (all of the foregoing, β€œThird Party Materials”), which are subject to the license terms of the respective third-party licensors. Your dealings or correspondence with third parties and your use of or interaction with any Third Party Materials are solely between you and the third party. Stability AI does not control or endorse, and makes no representations or warranties regarding, any Third Party Materials, and your access to and use of such Third Party Materials are at your own risk.
61
+
62
+
63
+ 9. TRADEMARKS
64
+
65
+ Licensee has not been granted any trademark license as part of this License and may not use any name or mark associated with Stability AI without the prior written permission of Stability AI, except to the extent necessary to make the reference required by the β€œATTRIBUTION” section of this Agreement.
66
+
67
+
68
+ 10. APPLICABLE LAW; DISPUTE RESOLUTION
69
+
70
+ This License will be governed and construed under the laws of the State of California without regard to conflicts of law provisions. Any suit or proceeding arising out of or relating to this License will be brought in the federal or state courts, as applicable, in San Mateo County, California, and each party irrevocably submits to the jurisdiction and venue of such courts.
71
+
72
+
73
+ 11. MISCELLANEOUS
74
+
75
+ If any provision or part of a provision of this License is unlawful, void or unenforceable, that provision or part of the provision is deemed severed from this License, and will not affect the validity and enforceability of any remaining provisions. The failure of Stability AI to exercise or enforce any right or provision of this License will not operate as a waiver of such right or provision. This License does not confer any third-party beneficiary rights upon any other person or entity. This License, together with the Documentation, contains the entire understanding between you and Stability AI regarding the subject matter of this License, and supersedes all other written or oral agreements and understandings between you and Stability AI regarding such subject matter. No change or addition to any provision of this License will be binding unless it is in writing and signed by an authorized representative of both you and Stability AI.
model_licenses/LICENSE-SDXL1.0 ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (c) 2023 Stability AI CreativeML Open RAIL++-M License dated July 26, 2023
2
+
3
+ Section I: PREAMBLE Multimodal generative models are being widely adopted and used, and
4
+ have the potential to transform the way artists, among other individuals, conceive and
5
+ benefit from AI or ML technologies as a tool for content creation. Notwithstanding the
6
+ current and potential benefits that these artifacts can bring to society at large, there
7
+ are also concerns about potential misuses of them, either due to their technical
8
+ limitations or ethical considerations. In short, this license strives for both the open
9
+ and responsible downstream use of the accompanying model. When it comes to the open
10
+ character, we took inspiration from open source permissive licenses regarding the grant
11
+ of IP rights. Referring to the downstream responsible use, we added use-based
12
+ restrictions not permitting the use of the model in very specific scenarios, in order
13
+ for the licensor to be able to enforce the license in case potential misuses of the
14
+ Model may occur. At the same time, we strive to promote open and responsible research on
15
+ generative models for art and content generation. Even though downstream derivative
16
+ versions of the model could be released under different licensing terms, the latter will
17
+ always have to include - at minimum - the same use-based restrictions as the ones in the
18
+ original license (this license). We believe in the intersection between open and
19
+ responsible AI development; thus, this agreement aims to strike a balance between both
20
+ in order to enable responsible open-science in the field of AI. This CreativeML Open
21
+ RAIL++-M License governs the use of the model (and its derivatives) and is informed by
22
+ the model card associated with the model. NOW THEREFORE, You and Licensor agree as
23
+ follows: Definitions "License" means the terms and conditions for use, reproduction, and
24
+ Distribution as defined in this document. "Data" means a collection of information
25
+ and/or content extracted from the dataset used with the Model, including to train,
26
+ pretrain, or otherwise evaluate the Model. The Data is not licensed under this License.
27
+ "Output" means the results of operating a Model as embodied in informational content
28
+ resulting therefrom. "Model" means any accompanying machine-learning based assemblies
29
+ (including checkpoints), consisting of learnt weights, parameters (including optimizer
30
+ states), corresponding to the model architecture as embodied in the Complementary
31
+ Material, that have been trained or tuned, in whole or in part on the Data, using the
32
+ Complementary Material. "Derivatives of the Model" means all modifications to the Model,
33
+ works based on the Model, or any other model which is created or initialized by transfer
34
+ of patterns of the weights, parameters, activations or output of the Model, to the other
35
+ model, in order to cause the other model to perform similarly to the Model, including -
36
+ but not limited to - distillation methods entailing the use of intermediate data
37
+ representations or methods based on the generation of synthetic data by the Model for
38
+ training the other model. "Complementary Material" means the accompanying source code
39
+ and scripts used to define, run, load, benchmark or evaluate the Model, and used to
40
+ prepare data for training or evaluation, if any. This includes any accompanying
41
+ documentation, tutorials, examples, etc, if any. "Distribution" means any transmission,
42
+ reproduction, publication or other sharing of the Model or Derivatives of the Model to a
43
+ third party, including providing the Model as a hosted service made available by
44
+ electronic or other remote means - e.g. API-based or web access. "Licensor" means the
45
+ copyright owner or entity authorized by the copyright owner that is granting the
46
+ License, including the persons or entities that may have rights in the Model and/or
47
+ distributing the Model. "You" (or "Your") means an individual or Legal Entity exercising
48
+ permissions granted by this License and/or making use of the Model for whichever purpose
49
+ and in any field of use, including usage of the Model in an end-use application - e.g.
50
+ chatbot, translator, image generator. "Third Parties" means individuals or legal
51
+ entities that are not under common control with Licensor or You. "Contribution" means
52
+ any work of authorship, including the original version of the Model and any
53
+ modifications or additions to that Model or Derivatives of the Model thereof, that is
54
+ intentionally submitted to Licensor for inclusion in the Model by the copyright owner or
55
+ by an individual or Legal Entity authorized to submit on behalf of the copyright owner.
56
+ For the purposes of this definition, "submitted" means any form of electronic, verbal,
57
+ or written communication sent to the Licensor or its representatives, including but not
58
+ limited to communication on electronic mailing lists, source code control systems, and
59
+ issue tracking systems that are managed by, or on behalf of, the Licensor for the
60
+ purpose of discussing and improving the Model, but excluding communication that is
61
+ conspicuously marked or otherwise designated in writing by the copyright owner as "Not a
62
+ Contribution." "Contributor" means Licensor and any individual or Legal Entity on behalf
63
+ of whom a Contribution has been received by Licensor and subsequently incorporated
64
+ within the Model.
65
+
66
+ Section II: INTELLECTUAL PROPERTY RIGHTS Both copyright and patent grants apply to the
67
+ Model, Derivatives of the Model and Complementary Material. The Model and Derivatives of
68
+ the Model are subject to additional terms as described in
69
+
70
+ Section III. Grant of Copyright License. Subject to the terms and conditions of this
71
+ License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive,
72
+ no-charge, royalty-free, irrevocable copyright license to reproduce, prepare, publicly
73
+ display, publicly perform, sublicense, and distribute the Complementary Material, the
74
+ Model, and Derivatives of the Model. Grant of Patent License. Subject to the terms and
75
+ conditions of this License and where and as applicable, each Contributor hereby grants
76
+ to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this paragraph) patent license to make, have made, use, offer to
78
+ sell, sell, import, and otherwise transfer the Model and the Complementary Material,
79
+ where such license applies only to those patent claims licensable by such Contributor
80
+ that are necessarily infringed by their Contribution(s) alone or by combination of their
81
+ Contribution(s) with the Model to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a cross-claim or counterclaim
83
+ in a lawsuit) alleging that the Model and/or Complementary Material or a Contribution
84
+ incorporated within the Model and/or Complementary Material constitutes direct or
85
+ contributory patent infringement, then any patent licenses granted to You under this
86
+ License for the Model and/or Work shall terminate as of the date such litigation is
87
+ asserted or filed. Section III: CONDITIONS OF USAGE, DISTRIBUTION AND REDISTRIBUTION
88
+ Distribution and Redistribution. You may host for Third Party remote access purposes
89
+ (e.g. software-as-a-service), reproduce and distribute copies of the Model or
90
+ Derivatives of the Model thereof in any medium, with or without modifications, provided
91
+ that You meet the following conditions: Use-based restrictions as referenced in
92
+ paragraph 5 MUST be included as an enforceable provision by You in any type of legal
93
+ agreement (e.g. a license) governing the use and/or distribution of the Model or
94
+ Derivatives of the Model, and You shall give notice to subsequent users You Distribute
95
+ to, that the Model or Derivatives of the Model are subject to paragraph 5. This
96
+ provision does not apply to the use of Complementary Material. You must give any Third
97
+ Party recipients of the Model or Derivatives of the Model a copy of this License; You
98
+ must cause any modified files to carry prominent notices stating that You changed the
99
+ files; You must retain all copyright, patent, trademark, and attribution notices
100
+ excluding those notices that do not pertain to any part of the Model, Derivatives of the
101
+ Model. You may add Your own copyright statement to Your modifications and may provide
102
+ additional or different license terms and conditions - respecting paragraph 4.a. - for
103
+ use, reproduction, or Distribution of Your modifications, or for any such Derivatives of
104
+ the Model as a whole, provided Your use, reproduction, and Distribution of the Model
105
+ otherwise complies with the conditions stated in this License. Use-based restrictions.
106
+ The restrictions set forth in Attachment A are considered Use-based restrictions.
107
+ Therefore You cannot use the Model and the Derivatives of the Model for the specified
108
+ restricted uses. You may use the Model subject to this License, including only for
109
+ lawful purposes and in accordance with the License. Use may include creating any content
110
+ with, finetuning, updating, running, training, evaluating and/or reparametrizing the
111
+ Model. You shall require all of Your users who use the Model or a Derivative of the
112
+ Model to comply with the terms of this paragraph (paragraph 5). The Output You Generate.
113
+ Except as set forth herein, Licensor claims no rights in the Output You generate using
114
+ the Model. You are accountable for the Output you generate and its subsequent uses. No
115
+ use of the output can contravene any provision as stated in the License.
116
+
117
+ Section IV: OTHER PROVISIONS Updates and Runtime Restrictions. To the maximum extent
118
+ permitted by law, Licensor reserves the right to restrict (remotely or otherwise) usage
119
+ of the Model in violation of this License. Trademarks and related. Nothing in this
120
+ License permits You to make use of Licensors’ trademarks, trade names, logos or to
121
+ otherwise suggest endorsement or misrepresent the relationship between the parties; and
122
+ any rights not expressly granted herein are reserved by the Licensors. Disclaimer of
123
+ Warranty. Unless required by applicable law or agreed to in writing, Licensor provides
124
+ the Model and the Complementary Material (and each Contributor provides its
125
+ Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
126
+ express or implied, including, without limitation, any warranties or conditions of
127
+ TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
128
+ solely responsible for determining the appropriateness of using or redistributing the
129
+ Model, Derivatives of the Model, and the Complementary Material and assume any risks
130
+ associated with Your exercise of permissions under this License. Limitation of
131
+ Liability. In no event and under no legal theory, whether in tort (including
132
+ negligence), contract, or otherwise, unless required by applicable law (such as
133
+ deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be
134
+ liable to You for damages, including any direct, indirect, special, incidental, or
135
+ consequential damages of any character arising as a result of this License or out of the
136
+ use or inability to use the Model and the Complementary Material (including but not
137
+ limited to damages for loss of goodwill, work stoppage, computer failure or malfunction,
138
+ or any and all other commercial damages or losses), even if such Contributor has been
139
+ advised of the possibility of such damages. Accepting Warranty or Additional Liability.
140
+ While redistributing the Model, Derivatives of the Model and the Complementary Material
141
+ thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty,
142
+ indemnity, or other liability obligations and/or rights consistent with this License.
143
+ However, in accepting such obligations, You may act only on Your own behalf and on Your
144
+ sole responsibility, not on behalf of any other Contributor, and only if You agree to
145
+ indemnify, defend, and hold each Contributor harmless for any liability incurred by, or
146
+ claims asserted against, such Contributor by reason of your accepting any such warranty
147
+ or additional liability. If any provision of this License is held to be invalid, illegal
148
+ or unenforceable, the remaining provisions shall be unaffected thereby and remain valid
149
+ as if such provision had not been set forth herein.
150
+
151
+ END OF TERMS AND CONDITIONS
152
+
153
+ Attachment A Use Restrictions
154
+ You agree not to use the Model or Derivatives of the Model:
155
+ In any way that violates any applicable national, federal, state, local or
156
+ international law or regulation; For the purpose of exploiting, harming or attempting to
157
+ exploit or harm minors in any way; To generate or disseminate verifiably false
158
+ information and/or content with the purpose of harming others; To generate or
159
+ disseminate personal identifiable information that can be used to harm an individual; To
160
+ defame, disparage or otherwise harass others; For fully automated decision making that
161
+ adversely impacts an individual’s legal rights or otherwise creates or modifies a
162
+ binding, enforceable obligation; For any use intended to or which has the effect of
163
+ discriminating against or harming individuals or groups based on online or offline
164
+ social behavior or known or predicted personal or personality characteristics; To
165
+ exploit any of the vulnerabilities of a specific group of persons based on their age,
166
+ social, physical or mental characteristics, in order to materially distort the behavior
167
+ of a person pertaining to that group in a manner that causes or is likely to cause that
168
+ person or another person physical or psychological harm; For any use intended to or
169
+ which has the effect of discriminating against individuals or groups based on legally
170
+ protected characteristics or categories; To provide medical advice and medical results
171
+ interpretation; To generate or disseminate information for the purpose to be used for
172
+ administration of justice, law enforcement, immigration or asylum processes, such as
173
+ predicting an individual will commit fraud/crime commitment (e.g. by text profiling,
174
+ drawing causal relationships between assertions made in documents, indiscriminate and
175
+ arbitrarily-targeted use).
outputs/000000.mp4 ADDED
Binary file (297 kB). View file
 
outputs/000001.mp4 ADDED
Binary file (297 kB). View file
 
outputs/000002.mp4 ADDED
Binary file (255 kB). View file
 
outputs/000003.mp4 ADDED
Binary file (288 kB). View file
 
outputs/000004.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2cc34e39dd8c5d2022de56d1d83936ac2b7a286ab0351895f1b83e00a9e2fa7
3
+ size 1574414
outputs/000005.mp4 ADDED
Binary file (265 kB). View file
 
outputs/simple_video_sample/svd_xt/000000.mp4 ADDED
Binary file (298 kB). View file
 
pyproject.toml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [build-system]
2
+ requires = ["hatchling"]
3
+ build-backend = "hatchling.build"
4
+
5
+ [project]
6
+ name = "sgm"
7
+ dynamic = ["version"]
8
+ description = "Stability Generative Models"
9
+ readme = "README.md"
10
+ license-files = { paths = ["LICENSE-CODE"] }
11
+ requires-python = ">=3.8"
12
+
13
+ [project.urls]
14
+ Homepage = "https://github.com/Stability-AI/generative-models"
15
+
16
+ [tool.hatch.version]
17
+ path = "sgm/__init__.py"
18
+
19
+ [tool.hatch.build]
20
+ # This needs to be explicitly set so the configuration files
21
+ # grafted into the `sgm` directory get included in the wheel's
22
+ # RECORD file.
23
+ include = [
24
+ "sgm",
25
+ ]
26
+ # The force-include configurations below make Hatch copy
27
+ # the configs/ directory (containing the various YAML files required
28
+ # to generatively model) into the source distribution and the wheel.
29
+
30
+ [tool.hatch.build.targets.sdist.force-include]
31
+ "./configs" = "sgm/configs"
32
+
33
+ [tool.hatch.build.targets.wheel.force-include]
34
+ "./configs" = "sgm/configs"
35
+
36
+ [tool.hatch.envs.ci]
37
+ skip-install = false
38
+
39
+ dependencies = [
40
+ "pytest"
41
+ ]
42
+
43
+ [tool.hatch.envs.ci.scripts]
44
+ test-inference = [
45
+ "pip install torch==2.0.1+cu118 torchvision==0.15.2+cu118 torchaudio==2.0.2+cu118 --index-url https://download.pytorch.org/whl/cu118",
46
+ "pip install -r requirements/pt2.txt",
47
+ "pytest -v tests/inference/test_inference.py {args}",
48
+ ]
pytest.ini ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [pytest]
2
+ markers =
3
+ inference: mark as inference test (deselect with '-m "not inference"')
requirements/pt13.txt ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ black==23.7.0
2
+ chardet>=5.1.0
3
+ clip @ git+https://github.com/openai/CLIP.git
4
+ einops>=0.6.1
5
+ fairscale>=0.4.13
6
+ fire>=0.5.0
7
+ fsspec>=2023.6.0
8
+ invisible-watermark>=0.2.0
9
+ kornia==0.6.9
10
+ matplotlib>=3.7.2
11
+ natsort>=8.4.0
12
+ numpy>=1.24.4
13
+ omegaconf>=2.3.0
14
+ onnx<=1.12.0
15
+ open-clip-torch>=2.20.0
16
+ opencv-python==4.6.0.66
17
+ pandas>=2.0.3
18
+ pillow>=9.5.0
19
+ pudb>=2022.1.3
20
+ pytorch-lightning==1.8.5
21
+ pyyaml>=6.0.1
22
+ scipy>=1.10.1
23
+ streamlit>=1.25.0
24
+ tensorboardx==2.5.1
25
+ timm>=0.9.2
26
+ tokenizers==0.12.1
27
+ --extra-index-url https://download.pytorch.org/whl/cu117
28
+ torch==1.13.1+cu117
29
+ torchaudio==0.13.1
30
+ torchdata==0.5.1
31
+ torchmetrics>=1.0.1
32
+ torchvision==0.14.1+cu117
33
+ tqdm>=4.65.0
34
+ transformers==4.19.1
35
+ triton==2.0.0.post1
36
+ urllib3<1.27,>=1.25.4
37
+ wandb>=0.15.6
38
+ webdataset>=0.2.33
39
+ wheel>=0.41.0
40
+ xformers==0.0.16
scripts/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (154 Bytes). View file
 
scripts/util/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (159 Bytes). View file
 
scripts/util/detection/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (169 Bytes). View file
 
scripts/util/detection/__pycache__/nsfw_and_watermark_dectection.cpython-310.pyc ADDED
Binary file (3.9 kB). View file
 
sgm/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (330 Bytes). View file
 
sgm/__pycache__/util.cpython-310.pyc ADDED
Binary file (9.45 kB). View file
 
sgm/inference/__pycache__/helpers.cpython-310.pyc ADDED
Binary file (8.87 kB). View file
 
sgm/inference/api.py CHANGED
@@ -5,15 +5,14 @@ from typing import Optional
5
 
6
  from omegaconf import OmegaConf
7
 
8
- from sgm.inference.helpers import Img2ImgDiscretizationWrapper, do_img2img, do_sample
9
- from sgm.modules.diffusionmodules.sampling import (
10
- DPMPP2MSampler,
11
- DPMPP2SAncestralSampler,
12
- EulerAncestralSampler,
13
- EulerEDMSampler,
14
- HeunEDMSampler,
15
- LinearMultistepSampler,
16
- )
17
  from sgm.util import load_model_from_config
18
 
19
 
 
5
 
6
  from omegaconf import OmegaConf
7
 
8
+ from sgm.inference.helpers import (Img2ImgDiscretizationWrapper, do_img2img,
9
+ do_sample)
10
+ from sgm.modules.diffusionmodules.sampling import (DPMPP2MSampler,
11
+ DPMPP2SAncestralSampler,
12
+ EulerAncestralSampler,
13
+ EulerEDMSampler,
14
+ HeunEDMSampler,
15
+ LinearMultistepSampler)
 
16
  from sgm.util import load_model_from_config
17
 
18
 
sgm/models/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (260 Bytes). View file
 
sgm/models/__pycache__/autoencoder.cpython-310.pyc ADDED
Binary file (19.2 kB). View file
 
sgm/models/__pycache__/diffusion.cpython-310.pyc ADDED
Binary file (10.9 kB). View file
 
sgm/models/autoencoder.py CHANGED
@@ -13,12 +13,8 @@ from packaging import version
13
 
14
  from ..modules.autoencoding.regularizers import AbstractRegularizer
15
  from ..modules.ema import LitEma
16
- from ..util import (
17
- default,
18
- get_nested_attribute,
19
- get_obj_from_str,
20
- instantiate_from_config,
21
- )
22
 
23
  logpy = logging.getLogger(__name__)
24
 
 
13
 
14
  from ..modules.autoencoding.regularizers import AbstractRegularizer
15
  from ..modules.ema import LitEma
16
+ from ..util import (default, get_nested_attribute, get_obj_from_str,
17
+ instantiate_from_config)
 
 
 
 
18
 
19
  logpy = logging.getLogger(__name__)
20
 
sgm/models/diffusion.py CHANGED
@@ -12,13 +12,8 @@ from ..modules import UNCONDITIONAL_CONFIG
12
  from ..modules.autoencoding.temporal_ae import VideoDecoder
13
  from ..modules.diffusionmodules.wrappers import OPENAIUNETWRAPPER
14
  from ..modules.ema import LitEma
15
- from ..util import (
16
- default,
17
- disabled_train,
18
- get_obj_from_str,
19
- instantiate_from_config,
20
- log_txt_as_img,
21
- )
22
 
23
 
24
  class DiffusionEngine(pl.LightningModule):
 
12
  from ..modules.autoencoding.temporal_ae import VideoDecoder
13
  from ..modules.diffusionmodules.wrappers import OPENAIUNETWRAPPER
14
  from ..modules.ema import LitEma
15
+ from ..util import (default, disabled_train, get_obj_from_str,
16
+ instantiate_from_config, log_txt_as_img)
 
 
 
 
 
17
 
18
 
19
  class DiffusionEngine(pl.LightningModule):
sgm/modules/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (321 Bytes). View file
 
sgm/modules/__pycache__/attention.cpython-310.pyc ADDED
Binary file (18 kB). View file
 
sgm/modules/__pycache__/ema.cpython-310.pyc ADDED
Binary file (3.22 kB). View file
 
sgm/modules/__pycache__/video_attention.cpython-310.pyc ADDED
Binary file (6.27 kB). View file
 
sgm/modules/autoencoding/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (171 Bytes). View file
 
sgm/modules/autoencoding/__pycache__/temporal_ae.cpython-310.pyc ADDED
Binary file (8.48 kB). View file
 
sgm/modules/autoencoding/regularizers/__init__.py CHANGED
@@ -5,7 +5,8 @@ import torch
5
  import torch.nn as nn
6
  import torch.nn.functional as F
7
 
8
- from ....modules.distributions.distributions import DiagonalGaussianDistribution
 
9
  from .base import AbstractRegularizer
10
 
11
 
 
5
  import torch.nn as nn
6
  import torch.nn.functional as F
7
 
8
+ from ....modules.distributions.distributions import \
9
+ DiagonalGaussianDistribution
10
  from .base import AbstractRegularizer
11
 
12
 
sgm/modules/autoencoding/regularizers/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.5 kB). View file
 
sgm/modules/autoencoding/regularizers/__pycache__/base.cpython-310.pyc ADDED
Binary file (2.04 kB). View file
 
sgm/modules/autoencoding/temporal_ae.py CHANGED
@@ -29,7 +29,7 @@ class VideoResBlock(ResnetBlock):
29
  super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs)
30
  if video_kernel_size is None:
31
  video_kernel_size = [3, 1, 1]
32
- self.time_mix_blocks = ResBlock(
33
  channels=out_channels,
34
  emb_channels=0,
35
  dropout=dropout,
@@ -74,7 +74,7 @@ class VideoResBlock(ResnetBlock):
74
 
75
  x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
76
 
77
- x = self.time_mix_blocks(x, temb)
78
 
79
  alpha = self.get_alpha(bs=b // timesteps)
80
  x = alpha * x + (1.0 - alpha) * x_mix
@@ -83,7 +83,7 @@ class VideoResBlock(ResnetBlock):
83
  return x
84
 
85
 
86
- class PostHocConv2WithTime(torch.nn.Conv2d):
87
  def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs):
88
  super().__init__(in_channels, out_channels, *args, **kwargs)
89
  if isinstance(video_kernel_size, Iterable):
@@ -333,9 +333,7 @@ class VideoDecoder(Decoder):
333
 
334
  def _make_conv(self) -> Callable:
335
  if self.time_mode != "attn-only":
336
- return partialclass(
337
- PostHocConv2WithTime, video_kernel_size=self.video_kernel_size
338
- )
339
  else:
340
  return Conv2DWrapper
341
 
 
29
  super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs)
30
  if video_kernel_size is None:
31
  video_kernel_size = [3, 1, 1]
32
+ self.time_stack = ResBlock(
33
  channels=out_channels,
34
  emb_channels=0,
35
  dropout=dropout,
 
74
 
75
  x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
76
 
77
+ x = self.time_stack(x, temb)
78
 
79
  alpha = self.get_alpha(bs=b // timesteps)
80
  x = alpha * x + (1.0 - alpha) * x_mix
 
83
  return x
84
 
85
 
86
+ class AE3DConv(torch.nn.Conv2d):
87
  def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs):
88
  super().__init__(in_channels, out_channels, *args, **kwargs)
89
  if isinstance(video_kernel_size, Iterable):
 
333
 
334
  def _make_conv(self) -> Callable:
335
  if self.time_mode != "attn-only":
336
+ return partialclass(AE3DConv, video_kernel_size=self.video_kernel_size)
 
 
337
  else:
338
  return Conv2DWrapper
339
 
sgm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (175 Bytes). View file
 
sgm/modules/diffusionmodules/__pycache__/denoiser.cpython-310.pyc ADDED
Binary file (3.09 kB). View file
 
sgm/modules/diffusionmodules/__pycache__/denoiser_scaling.cpython-310.pyc ADDED
Binary file (2.45 kB). View file
 
sgm/modules/diffusionmodules/__pycache__/discretizer.cpython-310.pyc ADDED
Binary file (3 kB). View file