Spaces:
Runtime error
Runtime error
Commit
β’
27486b3
1
Parent(s):
2799450
Upload 37 files
Browse files- configs/example_training/autoencoder/kl-f4/imagenet-attnfree-logvar.yaml +104 -0
- configs/example_training/autoencoder/kl-f4/imagenet-kl_f8_8chn.yaml +105 -0
- configs/example_training/imagenet-f8_cond.yaml +185 -0
- configs/example_training/toy/cifar10_cond.yaml +98 -0
- configs/example_training/toy/mnist.yaml +79 -0
- configs/example_training/toy/mnist_cond.yaml +98 -0
- configs/example_training/toy/mnist_cond_discrete_eps.yaml +103 -0
- configs/example_training/toy/mnist_cond_l1_loss.yaml +99 -0
- configs/example_training/toy/mnist_cond_with_ema.yaml +100 -0
- configs/example_training/txt2img-clipl-legacy-ucg-training.yaml +182 -0
- configs/example_training/txt2img-clipl.yaml +184 -0
- scripts/.DS_Store +0 -0
- simple_video_sample.py +3 -2
configs/example_training/autoencoder/kl-f4/imagenet-attnfree-logvar.yaml
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 4.5e-6
|
3 |
+
target: sgm.models.autoencoder.AutoencodingEngine
|
4 |
+
params:
|
5 |
+
input_key: jpg
|
6 |
+
monitor: val/rec_loss
|
7 |
+
|
8 |
+
loss_config:
|
9 |
+
target: sgm.modules.autoencoding.losses.GeneralLPIPSWithDiscriminator
|
10 |
+
params:
|
11 |
+
perceptual_weight: 0.25
|
12 |
+
disc_start: 20001
|
13 |
+
disc_weight: 0.5
|
14 |
+
learn_logvar: True
|
15 |
+
|
16 |
+
regularization_weights:
|
17 |
+
kl_loss: 1.0
|
18 |
+
|
19 |
+
regularizer_config:
|
20 |
+
target: sgm.modules.autoencoding.regularizers.DiagonalGaussianRegularizer
|
21 |
+
|
22 |
+
encoder_config:
|
23 |
+
target: sgm.modules.diffusionmodules.model.Encoder
|
24 |
+
params:
|
25 |
+
attn_type: none
|
26 |
+
double_z: True
|
27 |
+
z_channels: 4
|
28 |
+
resolution: 256
|
29 |
+
in_channels: 3
|
30 |
+
out_ch: 3
|
31 |
+
ch: 128
|
32 |
+
ch_mult: [1, 2, 4]
|
33 |
+
num_res_blocks: 4
|
34 |
+
attn_resolutions: []
|
35 |
+
dropout: 0.0
|
36 |
+
|
37 |
+
decoder_config:
|
38 |
+
target: sgm.modules.diffusionmodules.model.Decoder
|
39 |
+
params: ${model.params.encoder_config.params}
|
40 |
+
|
41 |
+
data:
|
42 |
+
target: sgm.data.dataset.StableDataModuleFromConfig
|
43 |
+
params:
|
44 |
+
train:
|
45 |
+
datapipeline:
|
46 |
+
urls:
|
47 |
+
- DATA-PATH
|
48 |
+
pipeline_config:
|
49 |
+
shardshuffle: 10000
|
50 |
+
sample_shuffle: 10000
|
51 |
+
|
52 |
+
decoders:
|
53 |
+
- pil
|
54 |
+
|
55 |
+
postprocessors:
|
56 |
+
- target: sdata.mappers.TorchVisionImageTransforms
|
57 |
+
params:
|
58 |
+
key: jpg
|
59 |
+
transforms:
|
60 |
+
- target: torchvision.transforms.Resize
|
61 |
+
params:
|
62 |
+
size: 256
|
63 |
+
interpolation: 3
|
64 |
+
- target: torchvision.transforms.ToTensor
|
65 |
+
- target: sdata.mappers.Rescaler
|
66 |
+
- target: sdata.mappers.AddOriginalImageSizeAsTupleAndCropToSquare
|
67 |
+
params:
|
68 |
+
h_key: height
|
69 |
+
w_key: width
|
70 |
+
|
71 |
+
loader:
|
72 |
+
batch_size: 8
|
73 |
+
num_workers: 4
|
74 |
+
|
75 |
+
|
76 |
+
lightning:
|
77 |
+
strategy:
|
78 |
+
target: pytorch_lightning.strategies.DDPStrategy
|
79 |
+
params:
|
80 |
+
find_unused_parameters: True
|
81 |
+
|
82 |
+
modelcheckpoint:
|
83 |
+
params:
|
84 |
+
every_n_train_steps: 5000
|
85 |
+
|
86 |
+
callbacks:
|
87 |
+
metrics_over_trainsteps_checkpoint:
|
88 |
+
params:
|
89 |
+
every_n_train_steps: 50000
|
90 |
+
|
91 |
+
image_logger:
|
92 |
+
target: main.ImageLogger
|
93 |
+
params:
|
94 |
+
enable_autocast: False
|
95 |
+
batch_frequency: 1000
|
96 |
+
max_images: 8
|
97 |
+
increase_log_steps: True
|
98 |
+
|
99 |
+
trainer:
|
100 |
+
devices: 0,
|
101 |
+
limit_val_batches: 50
|
102 |
+
benchmark: True
|
103 |
+
accumulate_grad_batches: 1
|
104 |
+
val_check_interval: 10000
|
configs/example_training/autoencoder/kl-f4/imagenet-kl_f8_8chn.yaml
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 4.5e-6
|
3 |
+
target: sgm.models.autoencoder.AutoencodingEngine
|
4 |
+
params:
|
5 |
+
input_key: jpg
|
6 |
+
monitor: val/loss/rec
|
7 |
+
disc_start_iter: 0
|
8 |
+
|
9 |
+
encoder_config:
|
10 |
+
target: sgm.modules.diffusionmodules.model.Encoder
|
11 |
+
params:
|
12 |
+
attn_type: vanilla-xformers
|
13 |
+
double_z: true
|
14 |
+
z_channels: 8
|
15 |
+
resolution: 256
|
16 |
+
in_channels: 3
|
17 |
+
out_ch: 3
|
18 |
+
ch: 128
|
19 |
+
ch_mult: [1, 2, 4, 4]
|
20 |
+
num_res_blocks: 2
|
21 |
+
attn_resolutions: []
|
22 |
+
dropout: 0.0
|
23 |
+
|
24 |
+
decoder_config:
|
25 |
+
target: sgm.modules.diffusionmodules.model.Decoder
|
26 |
+
params: ${model.params.encoder_config.params}
|
27 |
+
|
28 |
+
regularizer_config:
|
29 |
+
target: sgm.modules.autoencoding.regularizers.DiagonalGaussianRegularizer
|
30 |
+
|
31 |
+
loss_config:
|
32 |
+
target: sgm.modules.autoencoding.losses.GeneralLPIPSWithDiscriminator
|
33 |
+
params:
|
34 |
+
perceptual_weight: 0.25
|
35 |
+
disc_start: 20001
|
36 |
+
disc_weight: 0.5
|
37 |
+
learn_logvar: True
|
38 |
+
|
39 |
+
regularization_weights:
|
40 |
+
kl_loss: 1.0
|
41 |
+
|
42 |
+
data:
|
43 |
+
target: sgm.data.dataset.StableDataModuleFromConfig
|
44 |
+
params:
|
45 |
+
train:
|
46 |
+
datapipeline:
|
47 |
+
urls:
|
48 |
+
- DATA-PATH
|
49 |
+
pipeline_config:
|
50 |
+
shardshuffle: 10000
|
51 |
+
sample_shuffle: 10000
|
52 |
+
|
53 |
+
decoders:
|
54 |
+
- pil
|
55 |
+
|
56 |
+
postprocessors:
|
57 |
+
- target: sdata.mappers.TorchVisionImageTransforms
|
58 |
+
params:
|
59 |
+
key: jpg
|
60 |
+
transforms:
|
61 |
+
- target: torchvision.transforms.Resize
|
62 |
+
params:
|
63 |
+
size: 256
|
64 |
+
interpolation: 3
|
65 |
+
- target: torchvision.transforms.ToTensor
|
66 |
+
- target: sdata.mappers.Rescaler
|
67 |
+
- target: sdata.mappers.AddOriginalImageSizeAsTupleAndCropToSquare
|
68 |
+
params:
|
69 |
+
h_key: height
|
70 |
+
w_key: width
|
71 |
+
|
72 |
+
loader:
|
73 |
+
batch_size: 8
|
74 |
+
num_workers: 4
|
75 |
+
|
76 |
+
|
77 |
+
lightning:
|
78 |
+
strategy:
|
79 |
+
target: pytorch_lightning.strategies.DDPStrategy
|
80 |
+
params:
|
81 |
+
find_unused_parameters: True
|
82 |
+
|
83 |
+
modelcheckpoint:
|
84 |
+
params:
|
85 |
+
every_n_train_steps: 5000
|
86 |
+
|
87 |
+
callbacks:
|
88 |
+
metrics_over_trainsteps_checkpoint:
|
89 |
+
params:
|
90 |
+
every_n_train_steps: 50000
|
91 |
+
|
92 |
+
image_logger:
|
93 |
+
target: main.ImageLogger
|
94 |
+
params:
|
95 |
+
enable_autocast: False
|
96 |
+
batch_frequency: 1000
|
97 |
+
max_images: 8
|
98 |
+
increase_log_steps: True
|
99 |
+
|
100 |
+
trainer:
|
101 |
+
devices: 0,
|
102 |
+
limit_val_batches: 50
|
103 |
+
benchmark: True
|
104 |
+
accumulate_grad_batches: 1
|
105 |
+
val_check_interval: 10000
|
configs/example_training/imagenet-f8_cond.yaml
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-4
|
3 |
+
target: sgm.models.diffusion.DiffusionEngine
|
4 |
+
params:
|
5 |
+
scale_factor: 0.13025
|
6 |
+
disable_first_stage_autocast: True
|
7 |
+
log_keys:
|
8 |
+
- cls
|
9 |
+
|
10 |
+
scheduler_config:
|
11 |
+
target: sgm.lr_scheduler.LambdaLinearScheduler
|
12 |
+
params:
|
13 |
+
warm_up_steps: [10000]
|
14 |
+
cycle_lengths: [10000000000000]
|
15 |
+
f_start: [1.e-6]
|
16 |
+
f_max: [1.]
|
17 |
+
f_min: [1.]
|
18 |
+
|
19 |
+
denoiser_config:
|
20 |
+
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
|
21 |
+
params:
|
22 |
+
num_idx: 1000
|
23 |
+
|
24 |
+
scaling_config:
|
25 |
+
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
|
26 |
+
discretization_config:
|
27 |
+
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
28 |
+
|
29 |
+
network_config:
|
30 |
+
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
31 |
+
params:
|
32 |
+
use_checkpoint: True
|
33 |
+
in_channels: 4
|
34 |
+
out_channels: 4
|
35 |
+
model_channels: 256
|
36 |
+
attention_resolutions: [1, 2, 4]
|
37 |
+
num_res_blocks: 2
|
38 |
+
channel_mult: [1, 2, 4]
|
39 |
+
num_head_channels: 64
|
40 |
+
num_classes: sequential
|
41 |
+
adm_in_channels: 1024
|
42 |
+
transformer_depth: 1
|
43 |
+
context_dim: 1024
|
44 |
+
spatial_transformer_attn_type: softmax-xformers
|
45 |
+
|
46 |
+
conditioner_config:
|
47 |
+
target: sgm.modules.GeneralConditioner
|
48 |
+
params:
|
49 |
+
emb_models:
|
50 |
+
- is_trainable: True
|
51 |
+
input_key: cls
|
52 |
+
ucg_rate: 0.2
|
53 |
+
target: sgm.modules.encoders.modules.ClassEmbedder
|
54 |
+
params:
|
55 |
+
add_sequence_dim: True
|
56 |
+
embed_dim: 1024
|
57 |
+
n_classes: 1000
|
58 |
+
|
59 |
+
- is_trainable: False
|
60 |
+
ucg_rate: 0.2
|
61 |
+
input_key: original_size_as_tuple
|
62 |
+
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
63 |
+
params:
|
64 |
+
outdim: 256
|
65 |
+
|
66 |
+
- is_trainable: False
|
67 |
+
input_key: crop_coords_top_left
|
68 |
+
ucg_rate: 0.2
|
69 |
+
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
70 |
+
params:
|
71 |
+
outdim: 256
|
72 |
+
|
73 |
+
first_stage_config:
|
74 |
+
target: sgm.models.autoencoder.AutoencoderKL
|
75 |
+
params:
|
76 |
+
ckpt_path: CKPT_PATH
|
77 |
+
embed_dim: 4
|
78 |
+
monitor: val/rec_loss
|
79 |
+
ddconfig:
|
80 |
+
attn_type: vanilla-xformers
|
81 |
+
double_z: true
|
82 |
+
z_channels: 4
|
83 |
+
resolution: 256
|
84 |
+
in_channels: 3
|
85 |
+
out_ch: 3
|
86 |
+
ch: 128
|
87 |
+
ch_mult: [1, 2, 4, 4]
|
88 |
+
num_res_blocks: 2
|
89 |
+
attn_resolutions: []
|
90 |
+
dropout: 0.0
|
91 |
+
lossconfig:
|
92 |
+
target: torch.nn.Identity
|
93 |
+
|
94 |
+
loss_fn_config:
|
95 |
+
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
|
96 |
+
params:
|
97 |
+
loss_weighting_config:
|
98 |
+
target: sgm.modules.diffusionmodules.loss_weighting.EpsWeighting
|
99 |
+
sigma_sampler_config:
|
100 |
+
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
|
101 |
+
params:
|
102 |
+
num_idx: 1000
|
103 |
+
|
104 |
+
discretization_config:
|
105 |
+
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
106 |
+
|
107 |
+
sampler_config:
|
108 |
+
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
109 |
+
params:
|
110 |
+
num_steps: 50
|
111 |
+
|
112 |
+
discretization_config:
|
113 |
+
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
114 |
+
|
115 |
+
guider_config:
|
116 |
+
target: sgm.modules.diffusionmodules.guiders.VanillaCFG
|
117 |
+
params:
|
118 |
+
scale: 5.0
|
119 |
+
|
120 |
+
data:
|
121 |
+
target: sgm.data.dataset.StableDataModuleFromConfig
|
122 |
+
params:
|
123 |
+
train:
|
124 |
+
datapipeline:
|
125 |
+
urls:
|
126 |
+
# USER: adapt this path the root of your custom dataset
|
127 |
+
- DATA_PATH
|
128 |
+
pipeline_config:
|
129 |
+
shardshuffle: 10000
|
130 |
+
sample_shuffle: 10000 # USER: you might wanna adapt depending on your available RAM
|
131 |
+
|
132 |
+
decoders:
|
133 |
+
- pil
|
134 |
+
|
135 |
+
postprocessors:
|
136 |
+
- target: sdata.mappers.TorchVisionImageTransforms
|
137 |
+
params:
|
138 |
+
key: jpg # USER: you might wanna adapt this for your custom dataset
|
139 |
+
transforms:
|
140 |
+
- target: torchvision.transforms.Resize
|
141 |
+
params:
|
142 |
+
size: 256
|
143 |
+
interpolation: 3
|
144 |
+
- target: torchvision.transforms.ToTensor
|
145 |
+
- target: sdata.mappers.Rescaler
|
146 |
+
|
147 |
+
- target: sdata.mappers.AddOriginalImageSizeAsTupleAndCropToSquare
|
148 |
+
params:
|
149 |
+
h_key: height # USER: you might wanna adapt this for your custom dataset
|
150 |
+
w_key: width # USER: you might wanna adapt this for your custom dataset
|
151 |
+
|
152 |
+
loader:
|
153 |
+
batch_size: 64
|
154 |
+
num_workers: 6
|
155 |
+
|
156 |
+
lightning:
|
157 |
+
modelcheckpoint:
|
158 |
+
params:
|
159 |
+
every_n_train_steps: 5000
|
160 |
+
|
161 |
+
callbacks:
|
162 |
+
metrics_over_trainsteps_checkpoint:
|
163 |
+
params:
|
164 |
+
every_n_train_steps: 25000
|
165 |
+
|
166 |
+
image_logger:
|
167 |
+
target: main.ImageLogger
|
168 |
+
params:
|
169 |
+
disabled: False
|
170 |
+
enable_autocast: False
|
171 |
+
batch_frequency: 1000
|
172 |
+
max_images: 8
|
173 |
+
increase_log_steps: True
|
174 |
+
log_first_step: False
|
175 |
+
log_images_kwargs:
|
176 |
+
use_ema_scope: False
|
177 |
+
N: 8
|
178 |
+
n_rows: 2
|
179 |
+
|
180 |
+
trainer:
|
181 |
+
devices: 0,
|
182 |
+
benchmark: True
|
183 |
+
num_sanity_val_steps: 0
|
184 |
+
accumulate_grad_batches: 1
|
185 |
+
max_epochs: 1000
|
configs/example_training/toy/cifar10_cond.yaml
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-4
|
3 |
+
target: sgm.models.diffusion.DiffusionEngine
|
4 |
+
params:
|
5 |
+
denoiser_config:
|
6 |
+
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
7 |
+
params:
|
8 |
+
scaling_config:
|
9 |
+
target: sgm.modules.diffusionmodules.denoiser_scaling.EDMScaling
|
10 |
+
params:
|
11 |
+
sigma_data: 1.0
|
12 |
+
|
13 |
+
network_config:
|
14 |
+
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
15 |
+
params:
|
16 |
+
in_channels: 3
|
17 |
+
out_channels: 3
|
18 |
+
model_channels: 32
|
19 |
+
attention_resolutions: []
|
20 |
+
num_res_blocks: 4
|
21 |
+
channel_mult: [1, 2, 2]
|
22 |
+
num_head_channels: 32
|
23 |
+
num_classes: sequential
|
24 |
+
adm_in_channels: 128
|
25 |
+
|
26 |
+
conditioner_config:
|
27 |
+
target: sgm.modules.GeneralConditioner
|
28 |
+
params:
|
29 |
+
emb_models:
|
30 |
+
- is_trainable: True
|
31 |
+
input_key: cls
|
32 |
+
ucg_rate: 0.2
|
33 |
+
target: sgm.modules.encoders.modules.ClassEmbedder
|
34 |
+
params:
|
35 |
+
embed_dim: 128
|
36 |
+
n_classes: 10
|
37 |
+
|
38 |
+
first_stage_config:
|
39 |
+
target: sgm.models.autoencoder.IdentityFirstStage
|
40 |
+
|
41 |
+
loss_fn_config:
|
42 |
+
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
|
43 |
+
params:
|
44 |
+
loss_weighting_config:
|
45 |
+
target: sgm.modules.diffusionmodules.loss_weighting.EDMWeighting
|
46 |
+
params:
|
47 |
+
sigma_data: 1.0
|
48 |
+
sigma_sampler_config:
|
49 |
+
target: sgm.modules.diffusionmodules.sigma_sampling.EDMSampling
|
50 |
+
|
51 |
+
sampler_config:
|
52 |
+
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
53 |
+
params:
|
54 |
+
num_steps: 50
|
55 |
+
|
56 |
+
discretization_config:
|
57 |
+
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
|
58 |
+
|
59 |
+
guider_config:
|
60 |
+
target: sgm.modules.diffusionmodules.guiders.VanillaCFG
|
61 |
+
params:
|
62 |
+
scale: 3.0
|
63 |
+
|
64 |
+
data:
|
65 |
+
target: sgm.data.cifar10.CIFAR10Loader
|
66 |
+
params:
|
67 |
+
batch_size: 512
|
68 |
+
num_workers: 1
|
69 |
+
|
70 |
+
lightning:
|
71 |
+
modelcheckpoint:
|
72 |
+
params:
|
73 |
+
every_n_train_steps: 5000
|
74 |
+
|
75 |
+
callbacks:
|
76 |
+
metrics_over_trainsteps_checkpoint:
|
77 |
+
params:
|
78 |
+
every_n_train_steps: 25000
|
79 |
+
|
80 |
+
image_logger:
|
81 |
+
target: main.ImageLogger
|
82 |
+
params:
|
83 |
+
disabled: False
|
84 |
+
batch_frequency: 1000
|
85 |
+
max_images: 64
|
86 |
+
increase_log_steps: True
|
87 |
+
log_first_step: False
|
88 |
+
log_images_kwargs:
|
89 |
+
use_ema_scope: False
|
90 |
+
N: 64
|
91 |
+
n_rows: 8
|
92 |
+
|
93 |
+
trainer:
|
94 |
+
devices: 0,
|
95 |
+
benchmark: True
|
96 |
+
num_sanity_val_steps: 0
|
97 |
+
accumulate_grad_batches: 1
|
98 |
+
max_epochs: 20
|
configs/example_training/toy/mnist.yaml
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-4
|
3 |
+
target: sgm.models.diffusion.DiffusionEngine
|
4 |
+
params:
|
5 |
+
denoiser_config:
|
6 |
+
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
7 |
+
params:
|
8 |
+
scaling_config:
|
9 |
+
target: sgm.modules.diffusionmodules.denoiser_scaling.EDMScaling
|
10 |
+
params:
|
11 |
+
sigma_data: 1.0
|
12 |
+
|
13 |
+
network_config:
|
14 |
+
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
15 |
+
params:
|
16 |
+
in_channels: 1
|
17 |
+
out_channels: 1
|
18 |
+
model_channels: 32
|
19 |
+
attention_resolutions: []
|
20 |
+
num_res_blocks: 4
|
21 |
+
channel_mult: [1, 2, 2]
|
22 |
+
num_head_channels: 32
|
23 |
+
|
24 |
+
first_stage_config:
|
25 |
+
target: sgm.models.autoencoder.IdentityFirstStage
|
26 |
+
|
27 |
+
loss_fn_config:
|
28 |
+
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
|
29 |
+
params:
|
30 |
+
loss_weighting_config:
|
31 |
+
target: sgm.modules.diffusionmodules.loss_weighting.EDMWeighting
|
32 |
+
params:
|
33 |
+
sigma_data: 1.0
|
34 |
+
sigma_sampler_config:
|
35 |
+
target: sgm.modules.diffusionmodules.sigma_sampling.EDMSampling
|
36 |
+
|
37 |
+
sampler_config:
|
38 |
+
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
39 |
+
params:
|
40 |
+
num_steps: 50
|
41 |
+
|
42 |
+
discretization_config:
|
43 |
+
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
|
44 |
+
|
45 |
+
data:
|
46 |
+
target: sgm.data.mnist.MNISTLoader
|
47 |
+
params:
|
48 |
+
batch_size: 512
|
49 |
+
num_workers: 1
|
50 |
+
|
51 |
+
lightning:
|
52 |
+
modelcheckpoint:
|
53 |
+
params:
|
54 |
+
every_n_train_steps: 5000
|
55 |
+
|
56 |
+
callbacks:
|
57 |
+
metrics_over_trainsteps_checkpoint:
|
58 |
+
params:
|
59 |
+
every_n_train_steps: 25000
|
60 |
+
|
61 |
+
image_logger:
|
62 |
+
target: main.ImageLogger
|
63 |
+
params:
|
64 |
+
disabled: False
|
65 |
+
batch_frequency: 1000
|
66 |
+
max_images: 64
|
67 |
+
increase_log_steps: False
|
68 |
+
log_first_step: False
|
69 |
+
log_images_kwargs:
|
70 |
+
use_ema_scope: False
|
71 |
+
N: 64
|
72 |
+
n_rows: 8
|
73 |
+
|
74 |
+
trainer:
|
75 |
+
devices: 0,
|
76 |
+
benchmark: True
|
77 |
+
num_sanity_val_steps: 0
|
78 |
+
accumulate_grad_batches: 1
|
79 |
+
max_epochs: 10
|
configs/example_training/toy/mnist_cond.yaml
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-4
|
3 |
+
target: sgm.models.diffusion.DiffusionEngine
|
4 |
+
params:
|
5 |
+
denoiser_config:
|
6 |
+
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
7 |
+
params:
|
8 |
+
scaling_config:
|
9 |
+
target: sgm.modules.diffusionmodules.denoiser_scaling.EDMScaling
|
10 |
+
params:
|
11 |
+
sigma_data: 1.0
|
12 |
+
|
13 |
+
network_config:
|
14 |
+
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
15 |
+
params:
|
16 |
+
in_channels: 1
|
17 |
+
out_channels: 1
|
18 |
+
model_channels: 32
|
19 |
+
attention_resolutions: []
|
20 |
+
num_res_blocks: 4
|
21 |
+
channel_mult: [1, 2, 2]
|
22 |
+
num_head_channels: 32
|
23 |
+
num_classes: sequential
|
24 |
+
adm_in_channels: 128
|
25 |
+
|
26 |
+
conditioner_config:
|
27 |
+
target: sgm.modules.GeneralConditioner
|
28 |
+
params:
|
29 |
+
emb_models:
|
30 |
+
- is_trainable: True
|
31 |
+
input_key: cls
|
32 |
+
ucg_rate: 0.2
|
33 |
+
target: sgm.modules.encoders.modules.ClassEmbedder
|
34 |
+
params:
|
35 |
+
embed_dim: 128
|
36 |
+
n_classes: 10
|
37 |
+
|
38 |
+
first_stage_config:
|
39 |
+
target: sgm.models.autoencoder.IdentityFirstStage
|
40 |
+
|
41 |
+
loss_fn_config:
|
42 |
+
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
|
43 |
+
params:
|
44 |
+
loss_weighting_config:
|
45 |
+
target: sgm.modules.diffusionmodules.loss_weighting.EDMWeighting
|
46 |
+
params:
|
47 |
+
sigma_data: 1.0
|
48 |
+
sigma_sampler_config:
|
49 |
+
target: sgm.modules.diffusionmodules.sigma_sampling.EDMSampling
|
50 |
+
|
51 |
+
sampler_config:
|
52 |
+
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
53 |
+
params:
|
54 |
+
num_steps: 50
|
55 |
+
|
56 |
+
discretization_config:
|
57 |
+
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
|
58 |
+
|
59 |
+
guider_config:
|
60 |
+
target: sgm.modules.diffusionmodules.guiders.VanillaCFG
|
61 |
+
params:
|
62 |
+
scale: 3.0
|
63 |
+
|
64 |
+
data:
|
65 |
+
target: sgm.data.mnist.MNISTLoader
|
66 |
+
params:
|
67 |
+
batch_size: 512
|
68 |
+
num_workers: 1
|
69 |
+
|
70 |
+
lightning:
|
71 |
+
modelcheckpoint:
|
72 |
+
params:
|
73 |
+
every_n_train_steps: 5000
|
74 |
+
|
75 |
+
callbacks:
|
76 |
+
metrics_over_trainsteps_checkpoint:
|
77 |
+
params:
|
78 |
+
every_n_train_steps: 25000
|
79 |
+
|
80 |
+
image_logger:
|
81 |
+
target: main.ImageLogger
|
82 |
+
params:
|
83 |
+
disabled: False
|
84 |
+
batch_frequency: 1000
|
85 |
+
max_images: 16
|
86 |
+
increase_log_steps: True
|
87 |
+
log_first_step: False
|
88 |
+
log_images_kwargs:
|
89 |
+
use_ema_scope: False
|
90 |
+
N: 16
|
91 |
+
n_rows: 4
|
92 |
+
|
93 |
+
trainer:
|
94 |
+
devices: 0,
|
95 |
+
benchmark: True
|
96 |
+
num_sanity_val_steps: 0
|
97 |
+
accumulate_grad_batches: 1
|
98 |
+
max_epochs: 20
|
configs/example_training/toy/mnist_cond_discrete_eps.yaml
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-4
|
3 |
+
target: sgm.models.diffusion.DiffusionEngine
|
4 |
+
params:
|
5 |
+
denoiser_config:
|
6 |
+
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
|
7 |
+
params:
|
8 |
+
num_idx: 1000
|
9 |
+
|
10 |
+
scaling_config:
|
11 |
+
target: sgm.modules.diffusionmodules.denoiser_scaling.EDMScaling
|
12 |
+
discretization_config:
|
13 |
+
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
14 |
+
|
15 |
+
network_config:
|
16 |
+
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
17 |
+
params:
|
18 |
+
in_channels: 1
|
19 |
+
out_channels: 1
|
20 |
+
model_channels: 32
|
21 |
+
attention_resolutions: []
|
22 |
+
num_res_blocks: 4
|
23 |
+
channel_mult: [1, 2, 2]
|
24 |
+
num_head_channels: 32
|
25 |
+
num_classes: sequential
|
26 |
+
adm_in_channels: 128
|
27 |
+
|
28 |
+
conditioner_config:
|
29 |
+
target: sgm.modules.GeneralConditioner
|
30 |
+
params:
|
31 |
+
emb_models:
|
32 |
+
- is_trainable: True
|
33 |
+
input_key: cls
|
34 |
+
ucg_rate: 0.2
|
35 |
+
target: sgm.modules.encoders.modules.ClassEmbedder
|
36 |
+
params:
|
37 |
+
embed_dim: 128
|
38 |
+
n_classes: 10
|
39 |
+
|
40 |
+
first_stage_config:
|
41 |
+
target: sgm.models.autoencoder.IdentityFirstStage
|
42 |
+
|
43 |
+
loss_fn_config:
|
44 |
+
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
|
45 |
+
params:
|
46 |
+
loss_weighting_config:
|
47 |
+
target: sgm.modules.diffusionmodules.loss_weighting.EDMWeighting
|
48 |
+
sigma_sampler_config:
|
49 |
+
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
|
50 |
+
params:
|
51 |
+
num_idx: 1000
|
52 |
+
|
53 |
+
discretization_config:
|
54 |
+
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
55 |
+
|
56 |
+
sampler_config:
|
57 |
+
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
58 |
+
params:
|
59 |
+
num_steps: 50
|
60 |
+
|
61 |
+
discretization_config:
|
62 |
+
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
63 |
+
|
64 |
+
guider_config:
|
65 |
+
target: sgm.modules.diffusionmodules.guiders.VanillaCFG
|
66 |
+
params:
|
67 |
+
scale: 5.0
|
68 |
+
|
69 |
+
data:
|
70 |
+
target: sgm.data.mnist.MNISTLoader
|
71 |
+
params:
|
72 |
+
batch_size: 512
|
73 |
+
num_workers: 1
|
74 |
+
|
75 |
+
lightning:
|
76 |
+
modelcheckpoint:
|
77 |
+
params:
|
78 |
+
every_n_train_steps: 5000
|
79 |
+
|
80 |
+
callbacks:
|
81 |
+
metrics_over_trainsteps_checkpoint:
|
82 |
+
params:
|
83 |
+
every_n_train_steps: 25000
|
84 |
+
|
85 |
+
image_logger:
|
86 |
+
target: main.ImageLogger
|
87 |
+
params:
|
88 |
+
disabled: False
|
89 |
+
batch_frequency: 1000
|
90 |
+
max_images: 16
|
91 |
+
increase_log_steps: True
|
92 |
+
log_first_step: False
|
93 |
+
log_images_kwargs:
|
94 |
+
use_ema_scope: False
|
95 |
+
N: 16
|
96 |
+
n_rows: 4
|
97 |
+
|
98 |
+
trainer:
|
99 |
+
devices: 0,
|
100 |
+
benchmark: True
|
101 |
+
num_sanity_val_steps: 0
|
102 |
+
accumulate_grad_batches: 1
|
103 |
+
max_epochs: 20
|
configs/example_training/toy/mnist_cond_l1_loss.yaml
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-4
|
3 |
+
target: sgm.models.diffusion.DiffusionEngine
|
4 |
+
params:
|
5 |
+
denoiser_config:
|
6 |
+
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
7 |
+
params:
|
8 |
+
scaling_config:
|
9 |
+
target: sgm.modules.diffusionmodules.denoiser_scaling.EDMScaling
|
10 |
+
params:
|
11 |
+
sigma_data: 1.0
|
12 |
+
|
13 |
+
network_config:
|
14 |
+
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
15 |
+
params:
|
16 |
+
in_channels: 1
|
17 |
+
out_channels: 1
|
18 |
+
model_channels: 32
|
19 |
+
attention_resolutions: []
|
20 |
+
num_res_blocks: 4
|
21 |
+
channel_mult: [1, 2, 2]
|
22 |
+
num_head_channels: 32
|
23 |
+
num_classes: sequential
|
24 |
+
adm_in_channels: 128
|
25 |
+
|
26 |
+
conditioner_config:
|
27 |
+
target: sgm.modules.GeneralConditioner
|
28 |
+
params:
|
29 |
+
emb_models:
|
30 |
+
- is_trainable: True
|
31 |
+
input_key: cls
|
32 |
+
ucg_rate: 0.2
|
33 |
+
target: sgm.modules.encoders.modules.ClassEmbedder
|
34 |
+
params:
|
35 |
+
embed_dim: 128
|
36 |
+
n_classes: 10
|
37 |
+
|
38 |
+
first_stage_config:
|
39 |
+
target: sgm.models.autoencoder.IdentityFirstStage
|
40 |
+
|
41 |
+
loss_fn_config:
|
42 |
+
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
|
43 |
+
params:
|
44 |
+
loss_type: l1
|
45 |
+
loss_weighting_config:
|
46 |
+
target: sgm.modules.diffusionmodules.loss_weighting.EDMWeighting
|
47 |
+
params:
|
48 |
+
sigma_data: 1.0
|
49 |
+
sigma_sampler_config:
|
50 |
+
target: sgm.modules.diffusionmodules.sigma_sampling.EDMSampling
|
51 |
+
|
52 |
+
sampler_config:
|
53 |
+
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
54 |
+
params:
|
55 |
+
num_steps: 50
|
56 |
+
|
57 |
+
discretization_config:
|
58 |
+
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
|
59 |
+
|
60 |
+
guider_config:
|
61 |
+
target: sgm.modules.diffusionmodules.guiders.VanillaCFG
|
62 |
+
params:
|
63 |
+
scale: 3.0
|
64 |
+
|
65 |
+
data:
|
66 |
+
target: sgm.data.mnist.MNISTLoader
|
67 |
+
params:
|
68 |
+
batch_size: 512
|
69 |
+
num_workers: 1
|
70 |
+
|
71 |
+
lightning:
|
72 |
+
modelcheckpoint:
|
73 |
+
params:
|
74 |
+
every_n_train_steps: 5000
|
75 |
+
|
76 |
+
callbacks:
|
77 |
+
metrics_over_trainsteps_checkpoint:
|
78 |
+
params:
|
79 |
+
every_n_train_steps: 25000
|
80 |
+
|
81 |
+
image_logger:
|
82 |
+
target: main.ImageLogger
|
83 |
+
params:
|
84 |
+
disabled: False
|
85 |
+
batch_frequency: 1000
|
86 |
+
max_images: 64
|
87 |
+
increase_log_steps: True
|
88 |
+
log_first_step: False
|
89 |
+
log_images_kwargs:
|
90 |
+
use_ema_scope: False
|
91 |
+
N: 64
|
92 |
+
n_rows: 8
|
93 |
+
|
94 |
+
trainer:
|
95 |
+
devices: 0,
|
96 |
+
benchmark: True
|
97 |
+
num_sanity_val_steps: 0
|
98 |
+
accumulate_grad_batches: 1
|
99 |
+
max_epochs: 20
|
configs/example_training/toy/mnist_cond_with_ema.yaml
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-4
|
3 |
+
target: sgm.models.diffusion.DiffusionEngine
|
4 |
+
params:
|
5 |
+
use_ema: True
|
6 |
+
|
7 |
+
denoiser_config:
|
8 |
+
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
9 |
+
params:
|
10 |
+
scaling_config:
|
11 |
+
target: sgm.modules.diffusionmodules.denoiser_scaling.EDMScaling
|
12 |
+
params:
|
13 |
+
sigma_data: 1.0
|
14 |
+
|
15 |
+
network_config:
|
16 |
+
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
17 |
+
params:
|
18 |
+
in_channels: 1
|
19 |
+
out_channels: 1
|
20 |
+
model_channels: 32
|
21 |
+
attention_resolutions: []
|
22 |
+
num_res_blocks: 4
|
23 |
+
channel_mult: [1, 2, 2]
|
24 |
+
num_head_channels: 32
|
25 |
+
num_classes: sequential
|
26 |
+
adm_in_channels: 128
|
27 |
+
|
28 |
+
conditioner_config:
|
29 |
+
target: sgm.modules.GeneralConditioner
|
30 |
+
params:
|
31 |
+
emb_models:
|
32 |
+
- is_trainable: True
|
33 |
+
input_key: cls
|
34 |
+
ucg_rate: 0.2
|
35 |
+
target: sgm.modules.encoders.modules.ClassEmbedder
|
36 |
+
params:
|
37 |
+
embed_dim: 128
|
38 |
+
n_classes: 10
|
39 |
+
|
40 |
+
first_stage_config:
|
41 |
+
target: sgm.models.autoencoder.IdentityFirstStage
|
42 |
+
|
43 |
+
loss_fn_config:
|
44 |
+
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
|
45 |
+
params:
|
46 |
+
loss_weighting_config:
|
47 |
+
target: sgm.modules.diffusionmodules.loss_weighting.EDMWeighting
|
48 |
+
params:
|
49 |
+
sigma_data: 1.0
|
50 |
+
sigma_sampler_config:
|
51 |
+
target: sgm.modules.diffusionmodules.sigma_sampling.EDMSampling
|
52 |
+
|
53 |
+
sampler_config:
|
54 |
+
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
55 |
+
params:
|
56 |
+
num_steps: 50
|
57 |
+
|
58 |
+
discretization_config:
|
59 |
+
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
|
60 |
+
|
61 |
+
guider_config:
|
62 |
+
target: sgm.modules.diffusionmodules.guiders.VanillaCFG
|
63 |
+
params:
|
64 |
+
scale: 3.0
|
65 |
+
|
66 |
+
data:
|
67 |
+
target: sgm.data.mnist.MNISTLoader
|
68 |
+
params:
|
69 |
+
batch_size: 512
|
70 |
+
num_workers: 1
|
71 |
+
|
72 |
+
lightning:
|
73 |
+
modelcheckpoint:
|
74 |
+
params:
|
75 |
+
every_n_train_steps: 5000
|
76 |
+
|
77 |
+
callbacks:
|
78 |
+
metrics_over_trainsteps_checkpoint:
|
79 |
+
params:
|
80 |
+
every_n_train_steps: 25000
|
81 |
+
|
82 |
+
image_logger:
|
83 |
+
target: main.ImageLogger
|
84 |
+
params:
|
85 |
+
disabled: False
|
86 |
+
batch_frequency: 1000
|
87 |
+
max_images: 64
|
88 |
+
increase_log_steps: True
|
89 |
+
log_first_step: False
|
90 |
+
log_images_kwargs:
|
91 |
+
use_ema_scope: False
|
92 |
+
N: 64
|
93 |
+
n_rows: 8
|
94 |
+
|
95 |
+
trainer:
|
96 |
+
devices: 0,
|
97 |
+
benchmark: True
|
98 |
+
num_sanity_val_steps: 0
|
99 |
+
accumulate_grad_batches: 1
|
100 |
+
max_epochs: 20
|
configs/example_training/txt2img-clipl-legacy-ucg-training.yaml
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-4
|
3 |
+
target: sgm.models.diffusion.DiffusionEngine
|
4 |
+
params:
|
5 |
+
scale_factor: 0.13025
|
6 |
+
disable_first_stage_autocast: True
|
7 |
+
log_keys:
|
8 |
+
- txt
|
9 |
+
|
10 |
+
scheduler_config:
|
11 |
+
target: sgm.lr_scheduler.LambdaLinearScheduler
|
12 |
+
params:
|
13 |
+
warm_up_steps: [10000]
|
14 |
+
cycle_lengths: [10000000000000]
|
15 |
+
f_start: [1.e-6]
|
16 |
+
f_max: [1.]
|
17 |
+
f_min: [1.]
|
18 |
+
|
19 |
+
denoiser_config:
|
20 |
+
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
|
21 |
+
params:
|
22 |
+
num_idx: 1000
|
23 |
+
|
24 |
+
scaling_config:
|
25 |
+
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
|
26 |
+
discretization_config:
|
27 |
+
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
28 |
+
|
29 |
+
network_config:
|
30 |
+
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
31 |
+
params:
|
32 |
+
use_checkpoint: True
|
33 |
+
in_channels: 4
|
34 |
+
out_channels: 4
|
35 |
+
model_channels: 320
|
36 |
+
attention_resolutions: [1, 2, 4]
|
37 |
+
num_res_blocks: 2
|
38 |
+
channel_mult: [1, 2, 4, 4]
|
39 |
+
num_head_channels: 64
|
40 |
+
num_classes: sequential
|
41 |
+
adm_in_channels: 1792
|
42 |
+
num_heads: 1
|
43 |
+
transformer_depth: 1
|
44 |
+
context_dim: 768
|
45 |
+
spatial_transformer_attn_type: softmax-xformers
|
46 |
+
|
47 |
+
conditioner_config:
|
48 |
+
target: sgm.modules.GeneralConditioner
|
49 |
+
params:
|
50 |
+
emb_models:
|
51 |
+
- is_trainable: True
|
52 |
+
input_key: txt
|
53 |
+
ucg_rate: 0.1
|
54 |
+
legacy_ucg_value: ""
|
55 |
+
target: sgm.modules.encoders.modules.FrozenCLIPEmbedder
|
56 |
+
params:
|
57 |
+
always_return_pooled: True
|
58 |
+
|
59 |
+
- is_trainable: False
|
60 |
+
ucg_rate: 0.1
|
61 |
+
input_key: original_size_as_tuple
|
62 |
+
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
63 |
+
params:
|
64 |
+
outdim: 256
|
65 |
+
|
66 |
+
- is_trainable: False
|
67 |
+
input_key: crop_coords_top_left
|
68 |
+
ucg_rate: 0.1
|
69 |
+
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
70 |
+
params:
|
71 |
+
outdim: 256
|
72 |
+
|
73 |
+
first_stage_config:
|
74 |
+
target: sgm.models.autoencoder.AutoencoderKL
|
75 |
+
params:
|
76 |
+
ckpt_path: CKPT_PATH
|
77 |
+
embed_dim: 4
|
78 |
+
monitor: val/rec_loss
|
79 |
+
ddconfig:
|
80 |
+
attn_type: vanilla-xformers
|
81 |
+
double_z: true
|
82 |
+
z_channels: 4
|
83 |
+
resolution: 256
|
84 |
+
in_channels: 3
|
85 |
+
out_ch: 3
|
86 |
+
ch: 128
|
87 |
+
ch_mult: [ 1, 2, 4, 4 ]
|
88 |
+
num_res_blocks: 2
|
89 |
+
attn_resolutions: [ ]
|
90 |
+
dropout: 0.0
|
91 |
+
lossconfig:
|
92 |
+
target: torch.nn.Identity
|
93 |
+
|
94 |
+
loss_fn_config:
|
95 |
+
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
|
96 |
+
params:
|
97 |
+
loss_weighting_config:
|
98 |
+
target: sgm.modules.diffusionmodules.loss_weighting.EpsWeighting
|
99 |
+
sigma_sampler_config:
|
100 |
+
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
|
101 |
+
params:
|
102 |
+
num_idx: 1000
|
103 |
+
|
104 |
+
discretization_config:
|
105 |
+
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
106 |
+
|
107 |
+
sampler_config:
|
108 |
+
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
109 |
+
params:
|
110 |
+
num_steps: 50
|
111 |
+
|
112 |
+
discretization_config:
|
113 |
+
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
114 |
+
|
115 |
+
guider_config:
|
116 |
+
target: sgm.modules.diffusionmodules.guiders.VanillaCFG
|
117 |
+
params:
|
118 |
+
scale: 7.5
|
119 |
+
|
120 |
+
data:
|
121 |
+
target: sgm.data.dataset.StableDataModuleFromConfig
|
122 |
+
params:
|
123 |
+
train:
|
124 |
+
datapipeline:
|
125 |
+
urls:
|
126 |
+
# USER: adapt this path the root of your custom dataset
|
127 |
+
- DATA_PATH
|
128 |
+
pipeline_config:
|
129 |
+
shardshuffle: 10000
|
130 |
+
sample_shuffle: 10000 # USER: you might wanna adapt depending on your available RAM
|
131 |
+
|
132 |
+
decoders:
|
133 |
+
- pil
|
134 |
+
|
135 |
+
postprocessors:
|
136 |
+
- target: sdata.mappers.TorchVisionImageTransforms
|
137 |
+
params:
|
138 |
+
key: jpg # USER: you might wanna adapt this for your custom dataset
|
139 |
+
transforms:
|
140 |
+
- target: torchvision.transforms.Resize
|
141 |
+
params:
|
142 |
+
size: 256
|
143 |
+
interpolation: 3
|
144 |
+
- target: torchvision.transforms.ToTensor
|
145 |
+
- target: sdata.mappers.Rescaler
|
146 |
+
- target: sdata.mappers.AddOriginalImageSizeAsTupleAndCropToSquare
|
147 |
+
# USER: you might wanna use non-default parameters due to your custom dataset
|
148 |
+
|
149 |
+
loader:
|
150 |
+
batch_size: 64
|
151 |
+
num_workers: 6
|
152 |
+
|
153 |
+
lightning:
|
154 |
+
modelcheckpoint:
|
155 |
+
params:
|
156 |
+
every_n_train_steps: 5000
|
157 |
+
|
158 |
+
callbacks:
|
159 |
+
metrics_over_trainsteps_checkpoint:
|
160 |
+
params:
|
161 |
+
every_n_train_steps: 25000
|
162 |
+
|
163 |
+
image_logger:
|
164 |
+
target: main.ImageLogger
|
165 |
+
params:
|
166 |
+
disabled: False
|
167 |
+
enable_autocast: False
|
168 |
+
batch_frequency: 1000
|
169 |
+
max_images: 8
|
170 |
+
increase_log_steps: True
|
171 |
+
log_first_step: False
|
172 |
+
log_images_kwargs:
|
173 |
+
use_ema_scope: False
|
174 |
+
N: 8
|
175 |
+
n_rows: 2
|
176 |
+
|
177 |
+
trainer:
|
178 |
+
devices: 0,
|
179 |
+
benchmark: True
|
180 |
+
num_sanity_val_steps: 0
|
181 |
+
accumulate_grad_batches: 1
|
182 |
+
max_epochs: 1000
|
configs/example_training/txt2img-clipl.yaml
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-4
|
3 |
+
target: sgm.models.diffusion.DiffusionEngine
|
4 |
+
params:
|
5 |
+
scale_factor: 0.13025
|
6 |
+
disable_first_stage_autocast: True
|
7 |
+
log_keys:
|
8 |
+
- txt
|
9 |
+
|
10 |
+
scheduler_config:
|
11 |
+
target: sgm.lr_scheduler.LambdaLinearScheduler
|
12 |
+
params:
|
13 |
+
warm_up_steps: [10000]
|
14 |
+
cycle_lengths: [10000000000000]
|
15 |
+
f_start: [1.e-6]
|
16 |
+
f_max: [1.]
|
17 |
+
f_min: [1.]
|
18 |
+
|
19 |
+
denoiser_config:
|
20 |
+
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
|
21 |
+
params:
|
22 |
+
num_idx: 1000
|
23 |
+
|
24 |
+
scaling_config:
|
25 |
+
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
|
26 |
+
discretization_config:
|
27 |
+
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
28 |
+
|
29 |
+
network_config:
|
30 |
+
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
31 |
+
params:
|
32 |
+
use_checkpoint: True
|
33 |
+
in_channels: 4
|
34 |
+
out_channels: 4
|
35 |
+
model_channels: 320
|
36 |
+
attention_resolutions: [1, 2, 4]
|
37 |
+
num_res_blocks: 2
|
38 |
+
channel_mult: [1, 2, 4, 4]
|
39 |
+
num_head_channels: 64
|
40 |
+
num_classes: sequential
|
41 |
+
adm_in_channels: 1792
|
42 |
+
num_heads: 1
|
43 |
+
transformer_depth: 1
|
44 |
+
context_dim: 768
|
45 |
+
spatial_transformer_attn_type: softmax-xformers
|
46 |
+
|
47 |
+
conditioner_config:
|
48 |
+
target: sgm.modules.GeneralConditioner
|
49 |
+
params:
|
50 |
+
emb_models:
|
51 |
+
- is_trainable: True
|
52 |
+
input_key: txt
|
53 |
+
ucg_rate: 0.1
|
54 |
+
legacy_ucg_value: ""
|
55 |
+
target: sgm.modules.encoders.modules.FrozenCLIPEmbedder
|
56 |
+
params:
|
57 |
+
always_return_pooled: True
|
58 |
+
|
59 |
+
- is_trainable: False
|
60 |
+
ucg_rate: 0.1
|
61 |
+
input_key: original_size_as_tuple
|
62 |
+
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
63 |
+
params:
|
64 |
+
outdim: 256
|
65 |
+
|
66 |
+
- is_trainable: False
|
67 |
+
input_key: crop_coords_top_left
|
68 |
+
ucg_rate: 0.1
|
69 |
+
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
70 |
+
params:
|
71 |
+
outdim: 256
|
72 |
+
|
73 |
+
first_stage_config:
|
74 |
+
target: sgm.models.autoencoder.AutoencoderKL
|
75 |
+
params:
|
76 |
+
ckpt_path: CKPT_PATH
|
77 |
+
embed_dim: 4
|
78 |
+
monitor: val/rec_loss
|
79 |
+
ddconfig:
|
80 |
+
attn_type: vanilla-xformers
|
81 |
+
double_z: true
|
82 |
+
z_channels: 4
|
83 |
+
resolution: 256
|
84 |
+
in_channels: 3
|
85 |
+
out_ch: 3
|
86 |
+
ch: 128
|
87 |
+
ch_mult: [1, 2, 4, 4]
|
88 |
+
num_res_blocks: 2
|
89 |
+
attn_resolutions: []
|
90 |
+
dropout: 0.0
|
91 |
+
lossconfig:
|
92 |
+
target: torch.nn.Identity
|
93 |
+
|
94 |
+
loss_fn_config:
|
95 |
+
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
|
96 |
+
params:
|
97 |
+
loss_weighting_config:
|
98 |
+
target: sgm.modules.diffusionmodules.loss_weighting.EpsWeighting
|
99 |
+
sigma_sampler_config:
|
100 |
+
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
|
101 |
+
params:
|
102 |
+
num_idx: 1000
|
103 |
+
|
104 |
+
discretization_config:
|
105 |
+
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
106 |
+
|
107 |
+
sampler_config:
|
108 |
+
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
109 |
+
params:
|
110 |
+
num_steps: 50
|
111 |
+
|
112 |
+
discretization_config:
|
113 |
+
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
114 |
+
|
115 |
+
guider_config:
|
116 |
+
target: sgm.modules.diffusionmodules.guiders.VanillaCFG
|
117 |
+
params:
|
118 |
+
scale: 7.5
|
119 |
+
|
120 |
+
data:
|
121 |
+
target: sgm.data.dataset.StableDataModuleFromConfig
|
122 |
+
params:
|
123 |
+
train:
|
124 |
+
datapipeline:
|
125 |
+
urls:
|
126 |
+
# USER: adapt this path the root of your custom dataset
|
127 |
+
- DATA_PATH
|
128 |
+
pipeline_config:
|
129 |
+
shardshuffle: 10000
|
130 |
+
sample_shuffle: 10000
|
131 |
+
|
132 |
+
|
133 |
+
decoders:
|
134 |
+
- pil
|
135 |
+
|
136 |
+
postprocessors:
|
137 |
+
- target: sdata.mappers.TorchVisionImageTransforms
|
138 |
+
params:
|
139 |
+
key: jpg # USER: you might wanna adapt this for your custom dataset
|
140 |
+
transforms:
|
141 |
+
- target: torchvision.transforms.Resize
|
142 |
+
params:
|
143 |
+
size: 256
|
144 |
+
interpolation: 3
|
145 |
+
- target: torchvision.transforms.ToTensor
|
146 |
+
- target: sdata.mappers.Rescaler
|
147 |
+
# USER: you might wanna use non-default parameters due to your custom dataset
|
148 |
+
- target: sdata.mappers.AddOriginalImageSizeAsTupleAndCropToSquare
|
149 |
+
# USER: you might wanna use non-default parameters due to your custom dataset
|
150 |
+
|
151 |
+
loader:
|
152 |
+
batch_size: 64
|
153 |
+
num_workers: 6
|
154 |
+
|
155 |
+
lightning:
|
156 |
+
modelcheckpoint:
|
157 |
+
params:
|
158 |
+
every_n_train_steps: 5000
|
159 |
+
|
160 |
+
callbacks:
|
161 |
+
metrics_over_trainsteps_checkpoint:
|
162 |
+
params:
|
163 |
+
every_n_train_steps: 25000
|
164 |
+
|
165 |
+
image_logger:
|
166 |
+
target: main.ImageLogger
|
167 |
+
params:
|
168 |
+
disabled: False
|
169 |
+
enable_autocast: False
|
170 |
+
batch_frequency: 1000
|
171 |
+
max_images: 8
|
172 |
+
increase_log_steps: True
|
173 |
+
log_first_step: False
|
174 |
+
log_images_kwargs:
|
175 |
+
use_ema_scope: False
|
176 |
+
N: 8
|
177 |
+
n_rows: 2
|
178 |
+
|
179 |
+
trainer:
|
180 |
+
devices: 0,
|
181 |
+
benchmark: True
|
182 |
+
num_sanity_val_steps: 0
|
183 |
+
accumulate_grad_batches: 1
|
184 |
+
max_epochs: 1000
|
scripts/.DS_Store
CHANGED
Binary files a/scripts/.DS_Store and b/scripts/.DS_Store differ
|
|
simple_video_sample.py
CHANGED
@@ -18,8 +18,9 @@ from scripts.util.detection.nsfw_and_watermark_dectection import \
|
|
18 |
from sgm.inference.helpers import embed_watermark
|
19 |
from sgm.util import default, instantiate_from_config
|
20 |
|
|
|
21 |
def sample(
|
22 |
-
input_path: str = "assets/
|
23 |
num_frames: Optional[int] = None,
|
24 |
num_steps: Optional[int] = None,
|
25 |
version: str = "svd",
|
@@ -274,4 +275,4 @@ def load_model(
|
|
274 |
|
275 |
|
276 |
if __name__ == "__main__":
|
277 |
-
Fire(sample)
|
|
|
18 |
from sgm.inference.helpers import embed_watermark
|
19 |
from sgm.util import default, instantiate_from_config
|
20 |
|
21 |
+
|
22 |
def sample(
|
23 |
+
input_path: str = "assets/test_image.png", # Can either be image file or folder with image files
|
24 |
num_frames: Optional[int] = None,
|
25 |
num_steps: Optional[int] = None,
|
26 |
version: str = "svd",
|
|
|
275 |
|
276 |
|
277 |
if __name__ == "__main__":
|
278 |
+
Fire(sample)
|